
ACPI Source Language (ASL)
Operator Reference

This document contains the ASL Operator Reference of the
ACPI Specification 4.0a.

This document is intended only as quick ASL Operator
Reference. The full ACPI Specification can be downloaded
from:

http://www.acpi.info

574 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.3 ASL Operator Summary

Operator Name Page Description

1. Acquire 579 Acquire a mutex
2. Add 579 Integer Add
3. Alias 580 Define a name alias
4. And 580 Integer Bitwise And
5. ArgX 580 Method argument data objects
6. BankField 580 Declare fields in a banked configuration object
7. Break 581 Continue following the innermost enclosing While
8. BreakPoint 582 Used for debugging, stops execution in the debugger
9. Buffer 582 Declare Buffer object
10. Case 582 Expression for conditional execution
11. Concatenate 583 Concatenate two strings, integers or buffers
12. ConcatenateResTemplate 583 Concatenate two resource templates
13. CondRefOf 583 Conditional reference to an object
14. Continue 584 Continue innermost enclosing While loop
15. CopyObject 584 Copy and existing object
16. CreateBitField 584 Declare a bit field object of a buffer object
17. CreateByteField 585 Declare a byte field object of a buffer object
18. CreateDWordField 585 Declare a DWord field object of a buffer object
19. CreateField 585 Declare an arbitrary length bit field of a buffer object
20. CreateQWordField 585 Declare a QWord field object of a buffer object
21. CreateWordField 586 Declare a Word field object of a buffer object
22. DataTableRegion 586 Declare a Data Table Region
23. Debug 587 Debugger output
24. Decrement 587 Decrement an Integer
25. Default 587 Default execution path in Switch()
26. DefinitionBlock 588 Declare a Definition Block
27. DerefOf 588 Dereference an object reference
28. Device 588 Declare a bus/device object
29. Divide 590 Integer Divide
30. DMA 590 DMA Resource Descriptor macro
31. DWordIO 591 DWord IO Resource Descriptor macro
32. DWordMemory 592 DWord Memory Resource Descriptor macro
33. DWordSpace 594 DWord Space Resource Descriptor macro
34. EisaId 595 EISA ID String to Integer conversion macro
35. Else 595 Alternate conditional execution
36. ElseIf 596 Conditional execution
37. EndDependentFn 597 End Dependent Function Resource Descriptor macro
38. Event 597 Declare an event synchronization object
39. ExtendedIO 597 Extended IO Resource Descriptor macro
40. ExtendedMemory 599 Extended Memory Resource Descriptor macro
41. ExtendedSpace 600 Extended Space Resource Descriptor macro
42. External 601 Declare external objects
43. Fatal 602 Fatal error check
44. Field 602 Declare fields of an operation region object
45. FindSetLeftBit 605 Index of first least significant bit set
46. FindSetRightBit 605 Index of first most significant bit set
47. FixedIO 605 Fixed I/O Resource Descriptor macro
48. FromBCD 606 Convert from BCD to numeric
49. Function 606 Declare control method
50. If 607 Conditional execution
51. Include 607 Include another ASL file
52. Increment 608 Increment a Integer
53. Index 608 Indexed Reference to member object
54. IndexField 610 Declare Index/Data Fields
55. Interrupt 611 Interrupt Resource Descriptor macro
56. IO 612 IO Resource Descriptor macro
57. IRQ 613 Interrupt Resource Descriptor macro
58. IRQNoFlags 613 Short Interrupt Resource Descriptor macro
59. LAnd 614 Logical And
60. LEqual 614 Logical Equal
61. LGreater 614 Logical Greater
62. LGreaterEqual 615 Logical Not less
63. LLess 615 Logical Less
64. LLessEqual 615 Logical Not greater
65. LNot 616 Logical Not

ACPI Source Language (ASL) Reference 575

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

66. LNotEqual 616 Logical Not equal
67. Load 616 Load differentiating definition block
68. LoadTable 617 Load Table from RSDT/XSDT
69. LocalX 618 Method local data objects
70. LOr 618 Logical Or
71. Match 618 Search for match in package array
72. Memory24 619 Memory Resource Descriptor macro
73. Memory32 620 Memory Resource Descriptor macro
74. Memory32Fixed 621 Memory Resource Descriptor macro
75. Method 621 Declare a control method
76. Mid 623 Return a portion of buffer or string
77. Mod 623 Integer Modulo
78. Multiply 623 Integer Multiply
79. Mutex 624 Declare a mutex synchronization object
80. Name 624 Declare a Named object
81. NAnd 625 Integer Bitwise Nand
82. NoOp 625 No operation
83. NOr 625 Integer Bitwise Nor
84. Not 625 Integer Bitwise Not
85. Notify 626 Notify Object of event
86. ObjectType 626 Type of object
87. One 627 Constant One Object (1)
88. Ones 627 Constant Ones Object (-1)
89. OperationRegion 627 Declare an operational region
90. Or 629 Integer Bitwise Or
91. Package 629 Declare a package object
92. PowerResource 630 Declare a power resource object
93. Processor 630 Declare a processor package
94. QWordIO 631 QWord IO Resource Descriptor macro
95. QWordMemory 632 QWord Memory Resource Descriptor macro
96. QWordSpace 634 Qword Space Resource Descriptor macro
97. RefOf 635 Create Reference to an object
98. Register 635 Generic register Resource Descriptor macro
99. Release 636 Release a synchronization object
100. Reset 636 Reset a synchronization object
101. ResourceTemplate 637 Resource to buffer conversion macro
102. Return 637 Return from method execution
103. Revision 637 Constant revision object
104. Scope 637 Open named scope
105. ShiftLeft 638 Integer shift value left
106. ShiftRight 639 Integer shift value right
107. Signal 639 Signal a synchronization object
108. SizeOf 639 Get the size of a buffer, string, or package
109. Sleep 639 Sleep n milliseconds (yields the processor)
110. Stall 640 Delay n microseconds (does not yield the processor)
111. StartDependentFn 640 Start Dependent Function Resource Descriptor macro
112. StartDependentFnNoPri 641 Start Dependent Function Resource Descriptor macro
113. Store 641 Store object
114. Subtract 641 Integer Subtract
115. Switch 642 Select code to execute based on expression value
116. ThermalZone 644 Declare a thermal zone package.
117. Timer 644 Get 64-bit timer value
118. ToBCD 645 Convert Integer to BCD
119. ToBuffer 645 Convert data type to buffer
120. ToDecimalString 645 Convert data type to decimal string
121. ToHexString 646 Convert data type to hexadecimal string
122. ToInteger 646 Convert data type to integer
123. ToString 646 Copy ASCII string from buffer
124. ToUUID 647 Convert Ascii string to UUID
125. Unicode 648 String to Unicode conversion macro
126. Unload 648 Unload definition block
127. VendorLong 648 Vendor Resource Descriptor
128. VendorShort 649 Vendor Resource Descriptor
129. Wait 649 Wait on an Event
130. While 649 Conditional loop
131. WordBusNumber 650 Word Bus number Resource Descriptor macro
132. WordIO 651 Word IO Resource Descriptor macro
133. WordSpace 652 Word Space Resource Descriptor macro
134. Xor 654 Integer Bitwise Xor
135. Zero 654 Constant Zero object (0)

576 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.4 ASL Operator Summary By Type

Operator Name Page Description

// ASL compiler controls

External 601 Declare external objects
Include 607 Include another ASL file

// ACPI table management

DefinitionBlock 588 Declare a Definition Block
Load 616 Load definition block
LoadTable 617 Load Table from RSDT/XSDT
Unload 648 Unload definition block

// Miscellaneous named object creation

Alias 580 Define a name alias
Buffer 582 Declare Buffer object
Device 588 Declare a bus/device object
Function 606 Declare a control method
Method 621 Declare a control method
Name 624 Declare a Named object
Package 629 Declare a package object
PowerResource 630 Declare a power resource object
Processor 630 Declare a processor package
Scope 637 Open named scope
ThermalZone 644 Declare a thermal zone package.

// Operation Regions

BankField 580 Declare fields in a banked configuration object
DataTableRegion 586 Declare a Data Table Region
Field 602 Declare fields of an operation region object
IndexField 610 Declare Index/Data Fields
OperationRegion 627 Declare an operational region

// Buffer Fields

CreateBitField 584 Declare a bit field object of a buffer object
CreateByteField 585 Declare a byte field object of a buffer object
CreateDWordField 585 Declare a DWord field object of a buffer object
CreateField 585 Declare an arbitrary length bit field of a buffer object
CreateQWordField 585 Declare a QWord field object of a buffer object
CreateWordField 586 Declare a Word field object of a buffer object

// Synchronization

Acquire 579 Acquire a mutex
Event 597 Declare an event synchronization object
Mutex 624 Declare a mutex synchronization object
Notify 626 Notify Object of event
Release 636 Release a synchronization object
Reset 636 Reset a synchronization object
Signal 639 Signal a synchronization object
Wait 649 Wait on an Event

// Object references

CondRefOf 583 Conditional reference to an object
DerefOf 588 Dereference an object reference
RefOf 635 Create Reference to an object

ACPI Source Language (ASL) Reference 577

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

// Integer arithmetic

Add 579 Integer Add
And 580 Integer Bitwise And
Decrement 587 Decrement an Integer
Divide 590 Integer Divide
FindSetLeftBit 605 Index of first least significant bit set
FindSetRightBit 605 Index of first most significant bit set
Increment 608 Increment a Integer
Mod 623 Integer Modulo
Multiply 623 Integer Multiply
NAnd 625 Integer Bitwise Nand
NOr 625 Integer Bitwise Nor
Not 625 Integer Bitwise Not
Or 629 Integer Bitwise Or
ShiftLeft 638 Integer shift value left
ShiftRight 639 Integer shift value right
Subtract 641 Integer Subtract
Xor 654 Integer Bitwise Xor

// Logical operators

LAnd 614 Logical And
LEqual 614 Logical Equal
LGreater 614 Logical Greater
LGreaterEqual 615 Logical Not less
LLess 615 Logical Less
LLessEqual 615 Logical Not greater
LNot 616 Logical Not
LNotEqual 616 Logical Not equal
LOr 618 Logical Or

// Method execution control

Break 581 Continue following the innermost enclosing While
BreakPoint 582 Used for debugging, stops execution in the debugger
Case 582 Expression for conditional execution
Continue 584 Continue innermost enclosing While loop
Default 587 Default execution path in Switch()
Else 595 Alternate conditional execution
ElseIf 596 Conditional execution
Fatal 602 Fatal error check
If 607 Conditional execution
NoOp 625 No operation
Return 637 Return from method execution
Sleep 639 Sleep n milliseconds (yields the processor)
Stall 640 Delay n microseconds (does not yield the processor)
Switch 642 Select code to execute based on expression value
While 649 Conditional loop

// Data type conversion and manipulation

Concatenate 583 Concatenate two strings, integers or buffers
CopyObject 584 Copy and existing object
Debug 587 Debugger output
EisaId 595 EISA ID String to Integer conversion macro
FromBCD 606 Convert from BCD to numeric
Index 608 Indexed Reference to member object
Match 618 Search for match in package array
Mid 623 Return a portion of buffer or string
ObjectType 626 Type of object
SizeOf 639 Get the size of a buffer, string, or package
Store 641 Store object
Timer 644 Get 64-bit timer value
ToBCD 645 Convert Integer to BCD
ToBuffer 645 Convert data type to buffer
ToDecimalString 645 Convert data type to decimal string
ToHexString 646 Convert data type to hexadecimal string
ToInteger 646 Convert data type to integer
ToString 646 Copy ASCII string from buffer
ToUUID 647 Convert Ascii string to UUID

578 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Unicode 648 String to Unicode conversion macro

// Resource Descriptor macros

ConcatenateResTemplate 583 Concatenate two resource templates
DMA 590 DMA Resource Descriptor macro
DWordIO 591 DWord IO Resource Descriptor macro
DWordMemory 592 DWord Memory Resource Descriptor macro
DWordSpace 594 DWord Space Resource Descriptor macro
EndDependentFn 597 End Dependent Function Resource Descriptor macro
ExtendedIO 597 Extended I/O Resource Descriptor macro
ExtendedMemory 599 Extended Memory Resource Descriptor macro
ExtendedSpace 600 Extended Space Resource Descriptor macro
FixedIO 605 Fixed I/O Resource Descriptor macro
Interrupt 611 Interrupt Resource Descriptor macro
IO 612 IO Resource Descriptor macro
IRQ 613 Interrupt Resource Descriptor macro
IRQNoFlags 613 Short Interrupt Resource Descriptor macro
Memory24 619 Memory Resource Descriptor macro
Memory32 620 Memory Resource Descriptor macro
Memory32Fixed 621 Memory Resource Descriptor macro
QWordIO 631 QWord IO Resource Descriptor macro
QWordMemory 632 QWord Memory Resource Descriptor macro
QWordSpace 634 Qword Space Resource Descriptor macro
Register 635 Generic register Resource Descriptor macro
ResourceTemplate 637 Resource to buffer conversion macro
StartDependentFn 640 Start Dependent Function Resource Descriptor macro
StartDependentFnNoPri 641 Start Dependent Function Resource Descriptor macro
VendorLong 648 Vendor Resource Descriptor
VendorShort 649 Vendor Resource Descriptor
WordBusNumber 650 Word Bus number Resource Descriptor macro
WordIO 651 Word IO Resource Descriptor macro
WordSpace 652 Word Space Resource Descriptor macro

// Constants

One 627 Constant One Object (1)
Ones 627 Constant Ones Object (-1)
Revision 637 Constant revision object
Zero 654 Constant Zero object (0)

// Control method objects

ArgX 580 Method argument data objects
LocalX 618 Method local data objects

ACPI Source Language (ASL) Reference 579

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5 ASL Operator Reference

This section describes each of the ASL operators. The syntax for each operator is given, with a description
of each argument and an overall description of the operator behavior. Example ASL code is provided for
the more complex operators.

ASL operators can be categorized as follows:

 Named Object creation

 Method execution control (If, Else, While, etc.)

 Integer math

 Logical operators

 Resource Descriptor macros

 Object conversion

 Utility/Miscellaneous

18.5.1 Acquire (Acquire a Mutex)

Syntax

Acquire (SyncObject, TimeoutValue) => Boolean

Arguments

SynchObject must be a mutex synchronization object. TimeoutValue is evaluated as an Integer.

Description

Ownership of the Mutex is obtained. If the Mutex is already owned by a different invocation, the current
execution thread is suspended until the owner of the Mutex releases it or until at least TimeoutValue
milliseconds have elapsed. A Mutex can be acquired more than once by the same invocation.

This operation returns True if a timeout occurred and the mutex ownership was not acquired. A
TimeoutValue of 0xFFFF (or greater) indicates that there is no timeout and the operation will wait
indefinitely.

18.5.2 Add (Integer Add)

Syntax

Add (Addend1, Addend2, Result) => Integer

Arguments

Addend1 and Addend2 are evaluated as Integers.

Description

The operands are added and the result is optionally stored into Result. Overflow conditions are ignored and
the result of overflows simply loses the most significant bits.

580 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.3 Alias (Declare Name Alias)

Syntax

Alias (SourceObject, AliasObject)

Arguments

SourceObject is any named object. AliasObject is a NameString.

Description

Creates a new object named AliasObject that refers to and acts exactly the same as SourceObject.

AliasObject is created as an alias of SourceObject in the namespace. The SourceObject name must already
exist in the namespace. If the alias is to a name within the same definition block, the SourceObject name
must be logically ahead of this definition in the block.

Example

The following example shows the use of an Alias term:

Alias (\SUS.SET.EVEN, SSE)

18.5.4 And (Integer Bitwise And)

Syntax

And (Source1, Source2, Result) => Integer

Arguments

Source1 and Source2 are evaluated as Integers.

Description

A bitwise AND is performed and the result is optionally stored into Result.

18.5.5 Argx (Method Argument Data Objects)

Syntax

Arg0 | Arg1 | Arg2 | Arg3 | Arg4 | Arg5 | Arg6

Description

Up to 7 argument-object references can be passed to a control method. On entry to a control method, only
the argument objects that are passed are usable.

18.5.6 BankField (Declare Bank/Data Field)

Syntax

BankField (RegionName, BankName, BankValue, AccessType, LockRule,
UpdateRule) {FieldUnitList}

Arguments

RegionName is the name of the host Operation Region. BankName is the name of the bank selection
register.

ACPI Source Language (ASL) Reference 581

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Accessing the contents of a banked field data object will occur automatically through the proper bank
setting, with synchronization occurring on the operation region that contains the BankName data variable,
and on the Global Lock if specified by the LockRule.

The AccessType, LockRule, UpdateRule, and FieldUnitList are the same format as the Field operator.

Description

This operator creates data field objects. The contents of the created objects are obtained by a reference to a
bank selection register.

This encoding is used to define named data field objects whose data values are fields within a larger object
selected by a bank-selected register.

Example

The following is a block of ASL sample code using BankField:
 Creates a 4-bit bank-selected register in system I/O space.
 Creates overlapping fields in the same system I/O space that are selected via the bank register.

//
// Define a 256-byte operational region in SystemIO space
// and name it GIO0

OperationRegion (GIO0, SystemIO, 0x125, 0x100)

// Create some fields in GIO including a 4-bit bank select register

Field (GIO0, ByteAcc, NoLock, Preserve) {
GLB1, 1,
GLB2, 1,
Offset (1), // Move to offset for byte 1
BNK1, 4

}

// Create FET0 & FET1 in bank 0 at byte offset 0x30

BankField (GIO0, BNK1, 0, ByteAcc, NoLock, Preserve) {
Offset (0x30),
FET0, 1,
FET1, 1

}

// Create BLVL & BAC in bank 1 at the same offset

BankField (GIO0, BNK1, 1, ByteAcc, NoLock, Preserve) {
Offset (0x30),
BLVL, 7,
BAC, 1

}

18.5.7 Break (Break from While)

Syntax

Break

Description

Break causes execution to continue immediately following the innermost enclosing While or Switch
scope, in the current Method. If there is no enclosing While or Switch within the current Method, a fatal
error is generated.

582 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Compatibility Note: In ACPI 1.0, the Break operator continued immediately following the innermost
“code package.” Starting in ACPI 2.0, the Break operator was changed to exit the innermost “While” or
“Switch” package. This should have no impact on existing code, since the ACPI 1.0 definition was, in
practice, useless.

18.5.8 BreakPoint (Execution Break Point)

Syntax

BreakPoint

Description

Used for debugging, the Breakpoint opcode stops the execution and enters the AML debugger. In the non-
debug version of the AML interpreter, BreakPoint is equivalent to Noop.

18.5.9 Buffer (Declare Buffer Object)

Syntax

Buffer (BufferSize) {String or ByteList} => Buffer

Arguments

Declares a Buffer of size BufferSize and optional initial value of String or ByteList.

Description

The optional BufferSize parameter specifies the size of the buffer and the initial value is specified in
Initializer ByteList. If BufferSize is not specified, it defaults to the size of initializer. If the count is too
small to hold the value specified by initializer, the initializer size is used. For example, all four of the
following examples generate the same data in namespace, although they have different ASL encodings:

Buffer (10) {“P00.00A”}
Buffer (Arg0) {0x50, 0x30, 0x30, 0x2e, 0x30, 0x30, 0x41}
Buffer (10) {0x50, 0x30, 0x30, 0x2e, 0x30, 0x30, 0x41, 0x00, 0x00, 0x00}
Buffer () {0x50, 0x30, 0x30, 0x2e, 0x30, 0x30, 0x41, 0x00, 0x00, 0x00}

18.5.10 Case (Expression for Conditional Execution)

Syntax

Case (Value) {TermList}

Arguments

Value specifies an Integer, Buffer, String or Package object. TermList is a sequence of executable ASL
expressions.

Description

Execute code based upon the value of a Switch statement.

If the Case Value is an Integer, Buffer or String, then control passes to the statement that matches the value
of the enclosing Switch (Value). If the Case value is a Package, then control passes if any member of the
package matches the Switch (Value). The Switch CaseTermList can include any number of Case instances,
but no two Case Values (or members of a Value, if Value is a Package) within the same Switch statement
can contain the same value.

ACPI Source Language (ASL) Reference 583

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Execution of the statement body begins at the start of the TermList and proceeds until the end of the
TermList body or until a Break or Continue operator transfers control out of the body.

18.5.11 Concatenate (Concatenate Data)

Syntax

Concatenate (Source1, Source2, Result) => ComputationalData

Arguments

Source1 and Source2 must each evaluate to an integer, a string, or a buffer. The data type of Source1
dictates the required type of Source2 and the type of the result object. Source2 is implicitly converted if
necessary to match the type of Source1.

Description

Source2 is concatenated to Source1 and the result data is optionally stored into Result.

Table 18-16 Concatenate Data Types

Source1 Data Type Source2 Data Type (Converted Type) Result Data Type

Integer Integer/String/Buffer Integer Buffer

String Integer/String/Buffer String String

Buffer Integer/String/Buffer Buffer Buffer

18.5.12 ConcatenateResTemplate (Concatenate Resource Templates)

Syntax

ConcatenateResTemplate (Source1, Source2, Result) => Buffer

Arguments

Source1 and Source2 are evaluated as Resource Template buffers.

Description

The resource descriptors from Source2 are appended to the resource descriptors from Source1. Then a new
end tag and checksum are appended and the result is stored in Result, if specified. If either Source1 or
Source2 is exactly 1 byte in length, a run-time error occurs. An empty buffer is treated as a resource
template with only an end tag.

18.5.13 CondRefOf (Create Object Reference Conditionally)

Syntax

CondRefOf (Source, Result) => Boolean

Arguments

Attempts to create a reference to the Source object. The Source of this operation can be any object type (for
example, data package, device object, and so on), and the result data is optionally stored into Result.

584 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Description

On success, the Destination object is set to refer to Source and the execution result of this operation is the
value True. On failure, Destination is unchanged and the execution result of this operation is the value
False. This can be used to reference items in the namespace that may appear dynamically (for example,
from a dynamically loaded definition block).

CondRefOf is equivalent to RefOf except that if the Source object does not exist, it is fatal for RefOf but
not for CondRefOf.

18.5.14 Continue (Continue Innermost Enclosing While)

Syntax

Continue

Description

Continue causes execution to continue at the start of the innermost enclosing While scope, in the currently
executing Control Method, at the point where the condition is evaluated. If there is no enclosing While
within the current Method, a fatal error is generated.

18.5.15 CopyObject (Copy and Store Object)

Syntax

CopyObject (Source, Destination) => DataRefObject

Arguments

Converts the contents of the Source to a DataRefObject using the conversion rules in 18.2.5 and then copies
the results without conversion to the object referred to by Destination.

Description

If Destination is already an initialized object of type DataRefObject, the original contents of Destination
are discarded and replaced with Source. Otherwise, a fatal error is generated.

Compatibility Note: The CopyObject operator was first introduced new in ACPI 2.0.

18.5.16 CreateBitField (Create 1-Bit Buffer Field)

Syntax

CreateBitField (SourceBuffer, BitIndex, BitFieldName)

Arguments

SourceBuffer is evaluated as a buffer. BitIndex is evaluated as an integer. BitFieldName is a NameString.

Description

A new buffer field object named BitFieldName is created for the bit of SourceBuffer at the bit index of
BitIndex. The bit-defined field within SourceBuffer must exist.BitFieldName is created for the bit of
SourceBuffer at the bit index of BitIndex. The bit-defined field within SourceBuffer must exist.

ACPI Source Language (ASL) Reference 585

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.17 CreateByteField (Create 8-Bit Buffer Field)

Syntax

CreateByteField (SourceBuffer, ByteIndex, ByteFieldName)

Arguments

SourceBuffer is evaluated as a buffer. ByteIndex is evaluated as an integer. ByteFieldName is a
NameString.

Description

A new buffer field object named ByteFieldName is created for the byte of SourceBuffer at the byte index of
ByteIndex. The byte-defined field within SourceBuffer must exist.

18.5.18 CreateDWordField (Create 32-Bit Buffer Field)

Syntax

CreateDWordField (SourceBuffer, ByteIndex, DWordFieldName)

Arguments

SourceBuffer is evaluated as a buffer. ByteIndex is evaluated as an integer. DWordFieldName is a
NameString.

Description

A new buffer field object named DWordFieldName is created for the DWord of SourceBuffer at the byte
index of ByteIndex. The DWord-defined field within SourceBuffer must exist.

18.5.19 CreateField (Create Arbitrary Length Buffer Field)

Syntax

CreateField (SourceBuffer, BitIndex, NumBits, FieldName)

Arguments

SourceBuffer is evaluated as a buffer. BitIndex and NumBits are evaluated as integers. FieldName is a
NameString.

Description

A new buffer field object named FieldName is created for the bits of SourceBuffer at BitIndex for NumBits.
The entire bit range of the defined field within SourceBuffer must exist. If NumBits evaluates to zero, a
fatal exception is generated.

18.5.20 CreateQWordField (Create 64-Bit Buffer Field)

Syntax

CreateQWordField (SourceBuffer, ByteIndex, QWordFieldName)

Arguments

SourceBuffer is evaluated as a buffer. ByteIndex is evaluated as an integer. QWordFieldName is a
NameString.

586 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Description

A new buffer field object named QWordFieldName is created for the QWord of SourceBuffer at the byte
index of ByteIndex. The QWord-defined field within SourceBuffer must exist.

18.5.21 CreateWordField (Create 16-Bit Buffer Field)

Syntax

CreateWordField (SourceBuffer, ByteIndex, WordFieldName)

Arguments

SourceBuffer is evaluated as a buffer. ByteIndex is evaluated as an integer. WordFieldName is a
NameString.

Description

A new bufferfield object named WordFieldName is created for the word of SourceBuffer at the byte index
of ByteIndex. The word-defined field within SourceBuffer must exist.

18.5.22 DataTableRegion (Create Data Table Operation Region)

Syntax

DataTableRegion (RegionName, SignatureString, OemIDString, OemTableIDString)

Arguments

Creates a new region named RegionName. SignatureString, OemIDString and OemTableIDString are
evaluated as strings.

Description

A Data Table Region is a special Operation Region whose RegionSpace is SystemMemory . Any table
referenced by a Data Table Region must be in memory marked by AddressRangeReserved or
AddressRangeNVS.

The memory referred to by the Data Table Region is the memory that is occupied by the table referenced in
XSDT that is identified by SignatureString, OemIDString and OemTableIDString. Any Field object can
reference RegionName

The base address of a Data Table region is the address of the first byte of the header of the table identified
by SignatureString, OemIDString and OemTableIDString. The length of the region is the length of the
table.

ACPI Source Language (ASL) Reference 587

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.23 Debug (Debugger Output)

Syntax

Debug

Description

The debug data object is a virtual data object. Writes to this object provide debugging information. On at
least debug versions of the interpreter, any writes into this object are appropriately displayed on the
system’s native kernel debugger. All writes to the debug object are otherwise benign. If the system is in use
without a kernel debugger, then writes to the debug object are ignored. The following table relates the ASL
term types that can be written to the Debug object to the format of the information on the kernel debugger
display.

Table 18-17 Debug Object Display Formats

ASL Term Type Display Format

Numeric data object All digits displayed in hexadecimal format.

String data object String is displayed.

Object reference Information about the object is displayed (for example, object type and object
name), but the object is not evaluated.

The Debug object is a write-only object; attempting to read from the debug object is not supported.

18.5.24 Decrement (Integer Decrement)

Syntax

Decrement (Minuend) => Integer

Arguments

Minuend is evaluated as an Integer.

Description

This operation decrements the Minuend by one and the result is stored back to Minuend. Equivalent to
Subtract (Minuend, 1, Minuend). Underflow conditions are ignored and the result is Ones.

18.5.25 Default (Default Execution Path in Switch)

Syntax

Default {TermList}

Arguments

TermList is a sequence of executable ASL expressions.

Description

Within the body of a Switch (page 548) statement, the statements specified by TermList will be executed if
no Case (page 489) statement value matches the Switch statement value. If Default is omitted and no Case
match is found, none of the statements in the Switch body are executed. There can be at most one Default
statement in the immediate scope of the parent Switch statement. The Default statement can appear
anywhere in the body of the Switch statement.

588 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.26 DefinitionBlock (Declare Definition Block)

Syntax

DefinitionBlock (AMLFileName, TableSignature, ComplianceRevision, OEMID,
TableID, OEMRevision) {TermList}

Arguments

AMLFileName is a string that specifies the desired name of the translated output AML file. TableSignature
is a string that contains the 4-character ACPI signature. ComplianceRevision is an 8-bit value. OEMID is a
6-character string, TableId is an 8-character string, and OEMRevision is a 32-bit value. TermList is a
sequence of executable ASL expressions.

Description

The DefinitionBlock term specifies the unit of data and/or AML code that the OS will load as part of the
Differentiated Definition Block or as part of an additional Definition Block.

This unit of data and/or AML code describes either the base system or some large extension (such as a
docking station). The entire DefinitionBlock will be loaded and compiled by the OS as a single unit, and
can be unloaded by the OS as a single unit.

Note: For compatibility with ACPI versions before ACPI 2.0, the bit width of Integer objects is dependent
on the ComplianceRevision of the DSDT. If the ComplianceRevision is less than 2, all integers are
restricted to 32 bits. Otherwise, full 64-bit integers are used. The version of the DSDT sets the global
integer width for all integers, including integers in SSDTs.

18.5.27 DerefOf (Dereference an Object Reference)

Syntax

DerefOf (Source) => Object

Arguments

Returns the object referred by the Source object reference.

Description

If the Source evaluates to an object reference, the actual contents of the object referred to are returned. If
the Source evaluates to a string, the string is evaluated as an ASL name (relative to the current scope) and
the contents of that object are returned. If the object specified by Source does not exist then a fatal error is
generated.

Compatibility Note: The use of a String with DerefOf was first introduced in ACPI 2.0.

18.5.28 Device (Declare Bus/Device Package)

Syntax

Device (DeviceName) {ObjectList}

Arguments

Creates a Device object of name DeviceName, which represents either a bus or a device or any other similar
hardware. Device opens a name scope.

ACPI Source Language (ASL) Reference 589

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Description

A Bus/Device Package is one of the basic ways the Differentiated Definition Block describes the hardware
devices in the system to the operating software. Each Bus/Device Package is defined somewhere in the
hierarchical namespace corresponding to that device’s location in the system. Within the namespace of the
device are other names that provide information and control of the device, along with any sub-devices that
in turn describe sub-devices, and so on.

For any device, the BIOS provides only information that is added to the device in a non-hardware standard
manner. This type of value-added function is expressible in the ACPI Definition Block such that operating
software can use the function.

The BIOS supplies Device Objects only for devices that are obtaining some system-added function outside
the device’s normal capabilities and for any Device Object required to fill in the tree for such a device. For
example, if the system includes a PCI device (integrated or otherwise) with no additional functions such as
power management, the BIOS would not report such a device; however, if the system included an
integrated ISA device below the integrated PCI device (device is an ISA bridge), then the system would
include a Device Package for the ISA device with the minimum feature being added being the ISA device’s
ID and configuration information and the parent PCI device, because it is required to get the ISA Device
Package placement in the namespace correct.

Example

The following block of ASL sample code shows a nested use of Device objects to describe an IDE
controller connected to the root PCI bus.

Device (IDE0) { // primary controller
Name (_ADR, 0) // put PCI Address (device/function) here

// define region for IDE mode register

OperationRegion (PCIC, PCI_Config, 0x50, 0x10)
Field (PCIC, AnyAcc, NoLock, Preserve) {

…
}
Device (PRIM) { // Primary adapter

Name (_ADR, 0) // Primary adapter = 0
…
Method (_STM, 2) {

…
}
Method (_GTM) {

…
}
Device (MSTR) { // master channel

Name (_ADR, 0)
Name (_PR0, Package () {0, PIDE})

Name (_GTF) {
…

}
}
Device (SLAV) {

Name (_ADR, 1)
Name (_PR0, Package () {0, PIDE})
Name (_GTF) {

…
}

}
}

}

590 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.29 Divide (Integer Divide)

Syntax

Divide (Dividend, Divisor, Remainder, Result) => Integer

Arguments

Dividend and Divisor are evaluated as Integers.

Description

Dividend is divided by Divisor, then the resulting remainder is optionally stored into Remainder and the
resulting quotient is optionally stored into Result. Divide-by-zero exceptions are fatal.

The function return value is the Result (quotient).

18.5.30 DMA (DMA Resource Descriptor Macro)

Syntax

DMA (DmaType, IsBusMaster, DmaTransferSize, DescriptorName) {DmaChannelList}
=> Buffer

Arguments

DmaType specifies the type of DMA cycle: ISA compatible (Compatibility), EISA Type A (TypeA),
EISA Type B (TypeB) or EISA Type F (TypeF). The 2-bit field DescriptorName._TYP is automatically
created to refer to this portion of the resource descriptor, where ‘0’ is Compatibility, ‘1’ is TypeA, ‘2’ is
TypeB and ‘3’ is TypeF.

IsBusMaster specifies whether this device can generate DMA bus master cycles (BusMaster) or not
(NotBusMaster). If nothing is specified, then BusMaster is assumed. The 1-bit field DescriptorName._BM
is automatically created to refer to this portion of the resource descriptor, where ‘0’ is NotBusMaster and
‘1’ is BusMaster.

DmaTransferSize specifies the size of DMA cycles the device is capable of generating: 8-bit (Transfer8),
16-bit (Transfer16) or both 8 and 16-bit (Transfer8_16). The 2-bit field DescriptorName._SIZ is
automatically created to refer to this portion of the resource descriptor, where ‘0’ is Transfer8, ‘1’ is
Transfer8_16 and ‘2’ is Transfer16.

DescriptorName is an optional argument that specifies a name for an integer constant that will be created in
the current scope that contains the offset of this resource descriptor within the current resource template
buffer. The predefined descriptor field names may be appended to this name to access individual fields
within the descriptor via the Buffer Field operators.

DmaChannelList is a comma-delimited list of integers in the range 0 through 7 that specify the DMA
channels used by the device. There may be no duplicates in the list.

Description

The DMA macro evaluates to a buffer which contains a DMA resource descriptor. The format of the DMA
resource descriptor can be found in “DMA Descriptor” (page 225). The macro is designed to be used inside
of a ResourceTemplate (page 544).

ACPI Source Language (ASL) Reference 591

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.31 DWordIO (DWord IO Resource Descriptor Macro)

Syntax

DWordIO (ResourceUsage, IsMinFixed, IsMaxFixed, Decode, ISARanges,
AddressGranularity, AddressMinimum, AddressMaximum, AddressTranslation,
RangeLength, ResourceSourceIndex, ResourceSource, DescriptorName,
TranslationType, TranslationDensity)

Arguments

ResourceUsage specifies whether the I/O range is consumed by this device (ResourceConsumer) or
passed on to child devices (ResourceProducer). If nothing is specified, then ResourceConsumer is
assumed.

IsMinFixed specifies whether the minimum address of this I/O range is fixed (MinFixed) or can be
changed (MinNotFixed). If nothing is specified, then MinNotFixed is assumed. The 1-bit field
DescriptorName._MIF is automatically created to refer to this portion of the resource descriptor, where ‘1’
is MinFixed and ‘0’ is MinNotFixed.

IsMaxFixed specifies whether the maximum address of this I/O range is fixed (MaxFixed) or can be
changed (MaxNotFixed). If nothing is specified, then MaxNotFixed is assumed. The 1-bit field
DescriptorName._MAF is automatically created to refer to this portion of the resource descriptor, where ‘1’
is MaxFixed and ‘0’ is MaxNotFixed.

Decode specifies whether or not the device decodes the I/O range using positive (PosDecode) or
subtractive (SubDecode) decode. If nothing is specified, then PosDecode is assumed. The 1-bit field
DescriptorName._DEC is automatically created to refer to this portion of the resource descriptor, where ‘1’
is SubDecode and ‘0’ is PosDecode.

ISARanges specifies whether the I/O ranges specifies are limited to valid ISA I/O ranges (ISAOnly), valid
non-ISA I/O ranges (NonISAOnly) or encompass the whole range without limitation (EntireRange). The
2-bit field DescriptorName._RNG is automatically created to refer to this portion of the resource
descriptor, where ‘1’ is NonISAOnly, ‘2’ is ISAOnly and ‘0’ is EntireRange.

AddressGranularity evaluates to a 32-bit integer that specifies the power-of-two boundary (- 1) on which
the I/O range must be aligned. The 32-bit field DescriptorName._GRA is automatically created to refer to
this portion of the resource descriptor.

AddressMinimum evaluates to a 32-bit integer that specifies the lowest possible base address of the I/O
range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is ‘1’. For
bridge devices which translate addresses, this is the address on the secondary bus. The 32-bit field
DescriptorName._MIN is automatically created to refer to this portion of the resource descriptor.

AddressMaximum evaluates to a 32-bit integer that specifies the highest possible base address of the I/O
range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is ‘1’. For
bridge devices which translate addresses, this is the address on the secondary bus. The 32-bit field
DescriptorName._MAX is automatically created to refer to this portion of the resource descriptor.

AddressTranslation evaluates to a 32-bit integer that specifies the offset to be added to a secondary bus I/O
address which results in the corresponding primary bus I/O address. For all non-bridge devices or bridges
which do not perform translation, this must be ‘0’. The 32-bit field DescriptorName._TRA is automatically
created to refer to this portion of the resource descriptor.

RangeLength evaluates to a 32-bit integer that specifies the total number of bytes decoded in the I/O range.
The 32-bit field DescriptorName._LEN is automatically created to refer to this portion of the resource
descriptor.

ResourceSourceIndex is an optional argument which evaluates to an 8-bit integer that specifies the resource
descriptor within the object specified by ResourceSource. If this argument is specified, the ResourceSource
argument must also be specified.

592 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ResourceSource is an optional argument which evaluates to a string containing the path of a device which
produces the pool of resources from which this I/O range is allocated. If this argument is specified, but the
ResourceSourceIndex argument is not specified, a value of zero is assumed.

DescriptorName is an optional argument that specifies a name for an integer constant that will be created in
the current scope that contains the offset of this resource descriptor within the current resource template
buffer. The predefined descriptor field names may be appended to this name to access individual fields
within the descriptor via the Buffer Field operators.

TranslationType is an optional argument that specifies whether the resource type on the secondary side of
the bus is different (TypeTranslation) from that on the primary side of the bus or the same (TypeStatic).
If TypeTranslation is specified, then the secondary side of the bus is Memory. If TypeStatic is specified,
then the secondary side of the bus is I/O. If nothing is specified, then TypeStatic is assumed. The 1-bit field
DescriptorName._TTP is automatically created to refer to this portion of the resource descriptor, where ‘1’
is TypeTranslation and ‘0’ is TypeStatic. See _TTP (page 248) for more information

TranslationDensity is an optional argument that specifies whether or not the translation from the primary to
secondary bus is sparse (SparseTranslation) or dense (DenseTranslation). It is only used when
TranslationType is TypeTranslation. If nothing is specified, then DenseTranslation is assumed. The 1-bit
field DescriptorName._TRS is automatically created to refer to this portion of the resource descriptor,
where ‘1’ is SparseTranslation and ‘0’ is DenseTranslation. See _TRS (page 248) for more information.

Description

The DWordIO macro evaluates to a buffer which contains a 32-bit I/O range resource descriptor. The
format of the 32-bit I/O range resource descriptor can be found in “DWord Address Space Descriptor ”
(page 238). The macro is designed to be used inside of a ResourceTemplate (page 544).

18.5.32 DWordMemory (DWord Memory Resource Descriptor Macro)

Syntax

DWordMemory (ResourceUsage, Decode, IsMinFixed, IsMaxFixed, Cacheable,
ReadAndWrite, AddressGranularity, AddressMinimum, AddressMaximum,
AddressTranslation, RangeLength, ResourceSourceIndex, ResourceSource,
DescriptorName, MemoryType, TranslationType)

Arguments

ResourceUsage specifies whether the Memory range is consumed by this device (ResourceConsumer) or
passed on to child devices (ResourceProducer). If nothing is specified, then ResourceConsumer is
assumed.

Decode specifies whether or not the device decodes the Memory range using positive (PosDecode) or
subtractive (SubDecode) decode. If nothing is specified, then PosDecode is assumed. The 1-bit field
DescriptorName._DEC is automatically created to refer to this portion of the resource descriptor, where ‘1’
is SubDecode and ‘0’ is PosDecode.

IsMinFixed specifies whether the minimum address of this Memory range is fixed (MinFixed) or can be
changed (MinNotFixed). If nothing is specified, then MinNotFixed is assumed. The 1-bit field
DescriptorName._MIF is automatically created to refer to this portion of the resource descriptor, where ‘1’
is MinFixed and ‘0’ is MinNotFixed.

IsMaxFixed specifies whether the maximum address of this Memory range is fixed (MaxFixed) or can be
changed (MaxNotFixed). If nothing is specified, then MaxNotFixed is assumed. The 1-bit field
DescriptorName._MAF is automatically created to refer to this portion of the resource descriptor, where ‘1’
is MaxFixed and ‘0’ is MaxNotFixed.

ACPI Source Language (ASL) Reference 593

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Cacheable specifies whether or not the memory region is cacheable (Cacheable), cacheable and write-
combining (WriteCombining), cacheable and prefetchable (Prefetchable) or uncacheable
(NonCacheable). If nothing is specified, then NonCacheable is assumed. The 2-bit field
DescriptorName._MEM is automatically created to refer to this portion of the resource descriptor, where
‘1’ is Cacheable, ‘2’ is WriteCombining, ‘3’ is Prefetchable and ‘0’ is NonCacheable.

ReadAndWrite specifies whether or not the memory region is read-only (ReadOnly) or read/write
(ReadWrite). If nothing is specified, then ReadWrite is assumed. The 1-bit field DescriptorName._RW is
automatically created to refer to this portion of the resource descriptor, where ‘1’ is ReadWrite and ‘0’ is
ReadOnly.

AddressGranularity evaluates to a 32-bit integer that specifies the power-of-two boundary (- 1) on which
the Memory range must be aligned. The 32-bit field DescriptorName._GRA is automatically created to
refer to this portion of the resource descriptor.

AddressMinimum evaluates to a 32-bit integer that specifies the lowest possible base address of the
Memory range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is
‘1’. For bridge devices which translate addresses, this is the address on the secondary bus. The 32-bit field
DescriptorName._MIN is automatically created to refer to this portion of the resource descriptor.

AddressMaximum evaluates to a 32-bit integer that specifies the highest possible base address of the
Memory range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is
‘1’. For bridge devices which translate addresses, this is the address on the secondary bus. The 32-bit field
DescriptorName._MAX is automatically created to refer to this portion of the resource descriptor.

AddressTranslation evaluates to a 32-bit integer that specifies the offset to be added to a secondary bus I/O
address which results in the corresponding primary bus I/O address. For all non-bridge devices or bridges
which do not perform translation, this must be ‘0’. The 32-bit field DescriptorName._TRA is automatically
created to refer to this portion of the resource descriptor.

RangeLength evaluates to a 32-bit integer that specifies the total number of bytes decoded in the Memory
range. The 32-bit field DescriptorName._LEN is automatically created to refer to this portion of the
resource descriptor.

ResourceSourceIndex is an optional argument which evaluates to an 8-bit integer that specifies the resource
descriptor within the object specified by ResourceSource. If this argument is specified, the ResourceSource
argument must also be specified.

ResourceSource is an optional argument which evaluates to a string containing the path of a device which
produces the pool of resources from which this Memory range is allocated. If this argument is specified, but
the ResourceSourceIndex argument is not specified, a zero value is assumed.

DescriptorName is an optional argument that specifies a name for an integer constant that will be created in
the current scope that contains the offset of this resource descriptor within the current resource template
buffer. The predefined descriptor field names may be appended to this name to access individual fields
within the descriptor via the Buffer Field operators.

MemoryType is an optional argument that specifies the memory usage. The memory can be marked as
normal (AddressRangeMemory), used as ACPI NVS space (AddressRangeNVS), used as ACPI
reclaimable space (AddressRangeACPI) or as system reserved (AddressRangeReserved). If nothing is
specified, then AddressRangeMemory is assumed. The 2-bit field DescriptorName._MTP is automatically
created in order to refer to this portion of the resource descriptor, where ‘0’ is AddressRangeMemory, ‘1’ is
AddressRangeReserved, ‘2’ is AddressRangeACPI and ‘3’ is AddressRangeNVS.

TranslationType is an optional argument that specifies whether the resource type on the secondary side of
the bus is different (TypeTranslation) from that on the primary side of the bus or the same (TypeStatic).
If TypeTranslation is specified, then the secondary side of the bus is I/O. If TypeStatic is specified, then the
secondary side of the bus is I/O. If nothing is specified, then TypeStatic is assumed. The 1-bit field
DescriptorName._TTP is automatically created to refer to this portion of the resource descriptor, where ‘1’
is TypeTranslation and ‘0’ is TypeStatic. See _TTP (page 248) for more information.

594 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Description

The DWordMemory macro evaluates to a buffer which contains a 32-bit memory resource descriptor. The
format of the 32-bit memory resource descriptor can be found in “DWord Address Space Descriptor ”
(page 238). The macro is designed to be used inside of a ResourceTemplate (page 544).

18.5.33 DWordSpace (DWord Space Resource Descriptor Macro)

Syntax

DWordSpace (ResourceType, ResourceUsage, Decode, IsMinFixed, IsMaxFixed,
TypeSpecificFlags, AddressGranularity, AddressMinimum, AddressMaximum,
AddressTranslation, RangeLength, ResourceSourceIndex, ResourceSource,
DescriptorName)

Arguments

ResourceType evaluates to an 8-bit integer that specifies the type of this resource. Acceptable values are
0xC0 through 0xFF.

ResourceUsage specifies whether the Memory range is consumed by this device (ResourceConsumer) or
passed on to child devices (ResourceProducer). If nothing is specified, then ResourceConsumer is
assumed.

Decode specifies whether or not the device decodes the Memory range using positive (PosDecode) or
subtractive (SubDecode) decode. If nothing is specified, then PosDecode is assumed. The 1-bit field
DescriptorName._DEC is automatically created to refer to this portion of the resource descriptor, where ‘1’
is SubDecode and ‘0’ is PosDecode.

IsMinFixed specifies whether the minimum address of this Memory range is fixed (MinFixed) or can be
changed (MinNotFixed). If nothing is specified, then MinNotFixed is assumed. The 1-bit field
DescriptorName._MIF is automatically created to refer to this portion of the resource descriptor, where ‘1’
is MinFixed and ‘0’ is MinNotFixed.

IsMaxFixed specifies whether the maximum address of this Memory range is fixed (MaxFixed) or can be
changed (MaxNotFixed). If nothing is specified, then MaxNotFixed is assumed. The 1-bit field
DescriptorName._MAF is automatically created to refer to this portion of the resource descriptor, where ‘1’
is MaxFixed and ‘0’ is MaxNotFixed.

TypeSpecificFlags evaluates to an 8-bit integer. The flags are specific to the ResourceType.

AddressGranularity evaluates to a 32-bit integer that specifies the power-of-two boundary (- 1) on which
the Memory range must be aligned. The 32-bit field DescriptorName._GRA is automatically created to
refer to this portion of the resource descriptor.

AddressMinimum evaluates to a 32-bit integer that specifies the lowest possible base address of the
Memory range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is
‘1’. For bridge devices which translate addresses, this is the address on the secondary bus. The 32-bit field
DescriptorName._MIN is automatically created to refer to this portion of the resource descriptor.

AddressMaximum evaluates to a 32-bit integer that specifies the highest possible base address of the
Memory range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is
‘1’. For bridge devices which translate addresses, this is the address on the secondary bus. The 32-bit field
DescriptorName._MAX is automatically created to refer to this portion of the resource descriptor.

AddressTranslation evaluates to a 32-bit integer that specifies the offset to be added to a secondary bus I/O
address which results in the corresponding primary bus I/O address. For all non-bridge devices or bridges
which do not perform translation, this must be ‘0’. The 32-bit field DescriptorName._TRA is automatically
created to refer to this portion of the resource descriptor.

ACPI Source Language (ASL) Reference 595

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

RangeLength evaluates to a 32-bit integer that specifies the total number of bytes decoded in the Memory
range. The 32-bit field DescriptorName._LEN is automatically created to refer to this portion of the
resource descriptor.

ResourceSourceIndex is an optional argument which evaluates to an 8-bit integer that specifies the resource
descriptor within the object specified by ResourceSource. If this argument is specified, the ResourceSource
argument must also be specified.

ResourceSource is an optional argument which evaluates to a string containing the path of a device which
produces the pool of resources from which this Memory range is allocated. If this argument is specified, but
the ResourceSourceIndex argument is not specified, a zero value is assumed.

DescriptorName is an optional argument that specifies a name for an integer constant that will be created in
the current scope that contains the offset of this resource descriptor within the current resource template
buffer. The predefined descriptor field names may be appended to this name to access individual fields
within the descriptor via the Buffer Field operators.

Description

The DWordSpace macro evaluates to a buffer which contains a 32-bit Address Space resource descriptor.
The format of the 32-bit Address Space resource descriptor can be found in “DWord Address Space
Descriptor ” (page 238). The macro is designed to be used inside of a ResourceTemplate (page 544).

18.5.34 EISAID (EISA ID String To Integer Conversion Macro)

Syntax

EISAID (EisaIdString) => DWordConst

Arguments

The EisaIdString must be a String object of the form “UUUNNNN”, where “U” is an uppercase letter and
“N” is a hexadecimal digit. No asterisks or other characters are allowed in the string.

Description

Converts EisaIdString, a 7-character text string argument, into its corresponding 4-byte numeric EISA ID
encoding. It can be used when declaring IDs for devices that have EISA IDs.

Example

EISAID (“PNP0C09”) // This is a valid invocation of the macro.

18.5.35 Else (Alternate Execution)

Syntax

Else {TermList}

Arguments

TermList is a sequence of executable ASL statements.

Description

If Predicate evaluates to 0 in an If statement, then control is transferred to the Else portion, which can
consist of zero or more ElseIf statements followed by zero or one Else statements. If the Predicate of any
ElseIf statement evaluates to non-zero, the statements in its term list are executed and then control is
transferred past the end of the final Else term. If no Predicate evaluates to non-zero, then the statements in
the Else term list are executed.

596 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Example

The following example checks Local0 to be zero or non-zero. On non-zero, CNT is incremented;
otherwise, CNT is decremented.

If (LGreater (Local0, 5)
{

Increment (CNT)
} Else If (Local0) {

Add (CNT, 5, CNT)
}
Else
{

Decrement (CNT)
}

18.5.36 ElseIf (Alternate/Conditional Execution)

Syntax

ElseIf (Predicate)

Arguments

Predicate is evaluated as an Integer.

Description

If the Predicate of any ElseIf statement evaluates to non-zero, the statements in its term list are executed
and then control is transferred past the end of the final Else. If no Predicate evaluates to non-zero, then the
statements in the Else term list are executed.

Compatibility Note: The ElseIf operator was first introduced in ACPI 2.0, but is backward compatible
with the ACPI 1.0 specification. An ACPI 2.0 and later ASL compiler must synthesize ElseIf from the If.
and Else opcodes available in 1.0. For example:

If (predicate1)
{

…statements1…
}
ElseIf (predicate2)
{

…statements2…
}
Else
{

…statements3…
}

is translated to the following:

If (predicate1)
{

…statements1…
}
Else
{

If (predicate2)
{

…statements2…
}
Else
{

…statements3…
}

}

ACPI Source Language (ASL) Reference 597

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.37 EndDependentFn (End Dependent Function Resource Descriptor
Macro)

Syntax

EndDependentFn () => Buffer

Description

The EndDependentFn macro generates an end-of-dependent-function resource descriptor buffer inside of
an ResourceTemplate (page 544). It must be matched with a StartDependentFn (page 547) or
StartDependentFnNoPri (page 547) macro.

18.5.38 Event (Declare Event Synchronization Object)

Syntax

Event (EventName)

Arguments

Creates an event synchronization object named EventName.

Description

For more information about the uses of an event synchronization object, see the ASL definitions for the
Wait, Signal, and Reset function operators.

18.5.39 ExtendedIO (Extended IO Resource Descriptor Macro)

Syntax

ExtendedIO (ResourceUsage, IsMinFixed, IsMaxFixed, Decode, ISARanges,
AddressGranularity, AddressMinimum, AddressMaximum, AddressTranslation,
RangeLength, TypeSpecificAttributes, DescriptorName, TranslationType,
TranslationDensity)

Arguments

ResourceUsage specifies whether the Memory range is consumed by this device (ResourceConsumer) or
passed on to child devices (ResourceProducer). If nothing is specified, then ResourceConsumer is
assumed.

IsMinFixed specifies whether the minimum address of this I/O range is fixed (MinFixed) or can be
changed (MinNotFixed). If nothing is specified, then MinNotFixed is assumed. The 1-bit field
DescriptorName._MIF is automatically created to refer to this portion of the resource descriptor, where ‘1’
is MinFixed and ‘0’ is MinNotFixed.

IsMaxFixed specifies whether the maximum address of this I/O range is fixed (MaxFixed) or can be
changed (MaxNotFixed). If nothing is specified, then MaxNotFixed is assumed. The 1-bit field
DescriptorName._MAF is automatically created to refer to this portion of the resource descriptor, where ‘1’
is MaxFixed and ‘0’ is MaxNotFixed.

Decode specifies whether or not the device decodes the I/O range using positive (PosDecode) or
subtractive (SubDecode) decode. If nothing is specified, then PosDecode is assumed. The 1-bit field
DescriptorName._DEC is automatically created to refer to this portion of the resource descriptor, where ‘1’
is SubDecode and ‘0’ is PosDecode.

598 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ISARanges specifies whether the I/O ranges specifies are limited to valid ISA I/O ranges (ISAOnly), valid
non-ISA I/O ranges (NonISAOnly) or encompass the whole range without limitation (EntireRange). The
2-bit field DescriptorName._RNG is automatically created to refer to this portion of the resource
descriptor, where ‘1’ is NonISAOnly, ‘2’ is ISAOnly and ‘0’ is EntireRange.

AddressGranularity evaluates to a 64-bit integer that specifies the power-of-two boundary (- 1) on which
the I/O range must be aligned. The 64-bit field DescriptorName._GRA is automatically created to refer to
this portion of the resource descriptor.

AddressMinimum evaluates to a 64-bit integer that specifies the lowest possible base address of the I/O
range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is ‘1’. For
bridge devices which translate addresses, this is the address on the secondary bus. The 64-bit field
DescriptorName._MIN is automatically created to refer to this portion of the resource descriptor.

AddressMaximum evaluates to a 64-bit integer that specifies the highest possible base address of the I/O
range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is ‘1’. For
bridge devices which translate addresses, this is the address on the secondary bus. The 64-bit field
DescriptorName._MAX is automatically created to refer to this portion of the resource descriptor.

AddressTranslation evaluates to a 64-bit integer that specifies the offset to be added to a secondary bus I/O
address which results in the corresponding primary bus I/O address. For all non-bridge devices or bridges
which do not perform translation, this must be ‘0’. The 64-bit field DescriptorName._TRA is automatically
created to refer to this portion of the resource descriptor.

RangeLength evaluates to a 64-bit integer that specifies the total number of bytes decoded in the I/O range.
The 64-bit field DescriptorName._LEN is automatically created to refer to this portion of the resource
descriptor.

TranslationType is an optional argument that specifies whether the resource type on the secondary side of
the bus is different (TypeTranslation) from that on the primary side of the bus or the same (TypeStatic).
If TypeTranslation is specified, then the secondary side of the bus is Memory. If TypeStatic is specified,
then the secondary side of the bus is I/O. If nothing is specified, then TypeStatic is assumed. The 1-bit field
DescriptorName. _TTP is automatically created to refer to this portion of the resource descriptor, where ‘1’
is TypeTranslation and ‘0’ is TypeStatic. See _TTP (page 248) for more information

TranslationDensity is an optional argument that specifies whether or not the translation from the primary to
secondary bus is sparse (SparseTranslation) or dense (DenseTranslation). It is only used when
TranslationType is TypeTranslation. If nothing is specified, then DenseTranslation is assumed. The 1-bit
field DescriptorName._TRS is automatically created to refer to this portion of the resource descriptor,
where ‘1’ is SparseTranslation and ‘0’ is DenseTranslation. See _TRS (page 248) for more information.

TypeSpecificAttributes is an optional argument that specifies attributes specific to this resource type. See
section 6.4.3.5.4.1,”Type Specific Attributes”.

DescriptorName is an optional argument that specifies a name for an integer constant that will be created in
the current scope that contains the offset of this resource descriptor within the current resource template
buffer. The predefined descriptor field names may be appended to this name to access individual fields
within the descriptor via the Buffer Field operatorsDescription

The ExtendedIO macro evaluates to a buffer which contains a 64-bit I/O resource descriptor, which
describes a range of I/O addresses. The format of the 64-bit I/O resource descriptor can be found in
“Extended Address Space Descriptor” (page 242). The macro is designed to be used inside of a
ResourceTemplate (page 544).

ACPI Source Language (ASL) Reference 599

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.40 ExtendedMemory (Extended Memory Resource Descriptor Macro)

Syntax

ExtendedMemory (ResourceUsage, Decode, IsMinFixed, IsMaxFixed, Cacheable,
ReadAndWrite, AddressGranularity, AddressMinimum, AddressMaximum,
AddressTranslation, RangeLength, TypeSpecificAttributes,
DescriptorName, MemoryType, TranslationType)

Arguments

ResourceUsage specifies whether the Memory range is consumed by this device (ResourceConsumer) or
passed on to child devices (ResourceProducer). If nothing is specified, then ResourceConsumer is
assumed.

Decode specifies whether or not the device decodes the Memory range using positive (PosDecode) or
subtractive (SubDecode) decode. If nothing is specified, then PosDecode is assumed. The 1-bit field
DescriptorName._DEC is automatically created to refer to this portion of the resource descriptor, where ‘1’
is SubDecode and ‘0’ is PosDecode.

IsMinFixed specifies whether the minimum address of this Memory range is fixed (MinFixed) or can be
changed (MinNotFixed). If nothing is specified, then MinNotFixed is assumed. The 1-bit field
DescriptorName. _MIF is automatically created to refer to this portion of the resource descriptor, where ‘1’
is MinFixed and ‘0’ is MinNotFixed.

IsMaxFixed specifies whether the maximum address of this Memory range is fixed (MaxFixed) or can be
changed (MaxNotFixed). If nothing is specified, then MaxNotFixed is assumed. The 1-bit field
DescriptorName. _MAF is automatically created to refer to this portion of the resource descriptor, where
‘1’ is MaxFixed and ‘0’ is MaxNotFixed.

Cacheable specifies whether or not the memory region is cacheable (Cacheable), cacheable and write-
combining (WriteCombining), cacheable and prefetchable (Prefetchable) or uncacheable
(NonCacheable). If nothing is specified, then NonCacheable is assumed. The 2-bit field
DescriptorName._MEM is automatically created to refer to this portion of the resource descriptor, where
‘1’ is Cacheable, ‘2’ is WriteCombining, ‘3’ is Prefetchable and ‘0’ is NonCacheable.

ReadAndWrite specifies whether or not the memory region is read-only (ReadOnly) or read/write
(ReadWrite). If nothing is specified, then ReadWrite is assumed. The 1-bit field DescriptorName._RW is
automatically created to refer to this portion of the resource descriptor, where ‘1’ is ReadWrite and ‘0’ is
ReadOnly.

AddressGranularity evaluates to a 64-bit integer that specifies the power-of-two boundary (- 1) on which
the Memory range must be aligned. The 64-bit field DescriptorName._GRA is automatically created to
refer to this portion of the resource descriptor.

AddressMinimum evaluates to a 64-bit integer that specifies the lowest possible base address of the
Memory range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is
‘1’. For bridge devices which translate addresses, this is the address on the secondary bus. The 64-bit field
DescriptorName ._MIN is automatically created to refer to this portion of the resource descriptor.

AddressMaximum evaluates to a 64-bit integer that specifies the highest possible base address of the
Memory range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is
‘1’. For bridge devices which translate addresses, this is the address on the secondary bus. The 64-bit field
DescriptorName ._MAX is automatically created to refer to this portion of the resource descriptor.

AddressTranslation evaluates to a 64-bit integer that specifies the offset to be added to a secondary bus I/O
address which results in the corresponding primary bus I/O address. For all non-bridge devices or bridges
which do not perform translation, this must be ‘0’. The 64-bit field DescriptorName. _TRA is
automatically created to refer to this portion of the resource descriptor.

600 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

RangeLength evaluates to a 64-bit integer that specifies the total number of bytes decoded in the Memory
range. The 64-bit field DescriptorName. _LEN is automatically created to refer to this portion of the
resource descriptor.

DescriptorName is an optional argument that specifies a name for an integer constant that will be created in
the current scope that contains the offset of this resource descriptor within the current resource template
buffer. The predefined descriptor field names may be appended to this name to access individual fields
within the descriptor via the Buffer Field operators.

MemoryType is an optional argument that specifies the memory usage. The memory can be marked as
normal (AddressRangeMemory), used as ACPI NVS space (AddressRangeNVS), used as ACPI
reclaimable space (AddressRangeACPI) or as system reserved (AddressRangeReserved). If nothing is
specified, then AddressRangeMemory is assumed. The 2-bit field DescriptorName. _MTP is automatically
created in order to refer to this portion of the resource descriptor, where ‘0’ is AddressRangeMemory, ‘1’ is
AddressRangeReserved, ‘2’ is AddressRangeACPI and ‘3’ is AddressRangeNVS.

TranslationType is an optional argument that specifies whether the resource type on the secondary side of
the bus is different (TypeTranslation) from that on the primary side of the bus or the same (TypeStatic).
If TypeTranslation is specified, then the secondary side of the bus is I/O. If TypeStatic is specified, then the
secondary side of the bus is I/O. If nothing is specified, then TypeStatic is assumed. The 1-bit field
DescriptorName. _TTP is automatically created to refer to this portion of the resource descriptor, where ‘1’
is TypeTranslation and ‘0’ is TypeStatic. See _TTP (page 248) for more information.

TypeSpecificAttributes is an optional argument that specifies attributes specific to this resource type. See
section 6.4.3.5.4.1,”Type Specific Attributes”.

Description

The ExtendedMemory macro evaluates to a buffer which contains a 64-bit memory resource descriptor,
which describes a range of memory addresses. The format of the 64-bit memory resource descriptor can be
found in “Extended Address Space Descriptor” (page 242). The macro is designed to be used inside of a
ResourceTemplate (page 544).

18.5.41 ExtendedSpace (Extended Address Space Resource Descriptor
Macro)

Syntax

ExtendedSpace (ResourceType, ResourceUsage, Decode, IsMinFixed, IsMaxFixed,
TypeSpecificFlags, AddressGranularity, AddressMinimum, AddressMaximum,
AddressTranslation, RangeLength, TypeSpecificAttributes,
DescriptorName)

Arguments

ResourceType evaluates to an 8-bit integer that specifies the type of this resource. Acceptable values are
0xC0 through 0xFF.

ResourceUsage specifies whether the Memory range is consumed by this device (ResourceConsumer) or
passed on to child devices (ResourceProducer). If nothing is specified, then ResourceConsumer is
assumed.

Decode specifies whether or not the device decodes the Memory range using positive (PosDecode) or
subtractive (SubDecode) decode. If nothing is specified, then PosDecode is assumed. The 1-bit field
DescriptorName. _DEC is automatically created to refer to this portion of the resource descriptor, where
‘1’ is SubDecode and ‘0’ is PosDecode.

ACPI Source Language (ASL) Reference 601

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

IsMinFixed specifies whether the minimum address of this Memory range is fixed (MinFixed) or can be
changed (MinNotFixed). If nothing is specified, then MinNotFixed is assumed. The 1-bit field
DescriptorName. _MIF is automatically created to refer to this portion of the resource descriptor, where ‘1’
is MinFixed and ‘0’ is MinNotFixed.

IsMaxFixed specifies whether the maximum address of this Memory range is fixed (MaxFixed) or can be
changed (MaxNotFixed). If nothing is specified, then MaxNotFixed is assumed. The 1-bit field
DescriptorName. _MAF is automatically created to refer to this portion of the resource descriptor, where
‘1’ is MaxFixed and ‘0’ is MaxNotFixed.

TypeSpecificFlags evaluates to an 8-bit integer. The flags are specific to the ResourceType.

AddressGranularity evaluates to a 64-bit integer that specifies the power-of-two boundary (- 1) on which
the Memory range must be aligned. The 64-bit field DescriptorName. _GRA is automatically created to
refer to this portion of the resource descriptor.

AddressMinimum evaluates to a 64-bit integer that specifies the lowest possible base address of the
Memory range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is
‘1’. For bridge devices which translate addresses, this is the address on the secondary bus. The 64-bit field
DescriptorName._MIN is automatically created to refer to this portion of the resource descriptor.

AddressMaximum evaluates to a 64-bit integer that specifies the highest possible base address of the
Memory range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is
‘1’. For bridge devices which translate addresses, this is the address on the secondary bus. The 64-bit field
DescriptorName._MAX is automatically created to refer to this portion of the resource descriptor.

AddressTranslation evaluates to a 64-bit integer that specifies the offset to be added to a secondary bus I/O
address which results in the corresponding primary bus I/O address. For all non-bridge devices or bridges
which do not perform translation, this must be ‘0’. The 64-bit field DescriptorName._TRA is automatically
created to refer to this portion of the resource descriptor.

RangeLength evaluates to a 64-bit integer that specifies the total number of bytes decoded in the Memory
range. The 64-bit field DescriptorName. _LEN is automatically created to refer to this portion of the
resource descriptor.

TypeSpecificAttributes is an optional argument that specifies attributes specific to this resource type. See
section 6.4.3.5.4.1,”Type Specific Attributes”.

DescriptorName is an optional argument that specifies a name for an integer constant that will be created in
the current scope that contains the offset of this resource descriptor within the current resource template
buffer. The predefined descriptor field names may be appended to this name to access individual fields
within the descriptor via the Buffer Field operators.

Description

The ExtendedSpace macro evaluates to a buffer which contains a 64-bit Address Space resource
descriptor, which describes a range of addresses. The format of the 64-bit AddressSpace descriptor can be
found in “Extended Address Space Descriptor” (page 242). The macro is designed to be used inside of a
ResourceTemplate (page 544).

18.5.42 External (Declare External Objects)

Syntax

External (ObjectName, ObjectType, ReturnType, ParameterTypes)

Arguments

ObjectName is a NameString.

ObjectType is an optional ObjectTypeKeyword (e.g. IntObj, PkgObj, etc.). If not specified,
“UnknownObj” type is assumed.

602 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ReturnType is optional. If the specified ObjectType is MethodObj, then this specifies the type or types of
object returned by the method. If the method does not return an object, then nothing is specified or
UnknownObj is specified. To specify a single return type, simply use the ObjectTypeKeyword. To specify
multiple possible return types, enclose the comma-separated ObjectTypeKeywords with braces. For
example: {IntObj, BuffObj}.

ParameterTypes is optional. If the specified ObjectType is MethodObj, this specifies both the number and
type of the method parameters. It is a comma-separated, variable-length list of the expected object type or
types for each of the method parameters, enclosed in braces. For each parameter, the parameter type
consists of either an ObjectTypeKeyword or a comma-separated sub-list of ObjectTypeKeywords enclosed
in braces. There can be no more than seven parameters in total.Description

The External directive informs the ASL compiler that the object is declared external to this table so that no
errors will be generated for an undeclared object. The ASL compiler will create the external object at the
specified place in the namespace (if a full path of the object is specified), or the object will be created at the
current scope of the External term.

External is especially useful for use in secondary SSDTs, when the required scopes and objects are declared
in the main DSDT.

Example

This example shows the use of External in conjunction with Scope within an SSDT:

DefinitionBlock ("ssdt.aml", "SSDT", 2, "X", "Y", 0x00000001)
{

External (_SB.PCI0, DeviceObj)

Scope (_SB.PCI0)
{
}

}

18.5.43 Fatal (Fatal Error Check)

Syntax

Fatal (Type, Code, Arg)

Arguments

This operation is used to inform the OS that there has been an OEM-defined fatal error.

Description

In response, the OS must log the fatal event and perform a controlled OS shutdown in a timely fashion.

18.5.44 Field (Declare Field Objects)

Syntax

Field (RegionName, AccessType, LockRule, UpdateRule) {FieldUnitList}

Arguments

RegionName is a namestring that refers to the host operation region.

ACPI Source Language (ASL) Reference 603

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

AccessType defines the default access width of the field definition and is any one of the following:
AnyAcc, ByteAcc, WordAcc, DWordAcc, or QWordAcc. In general, accesses within the parent object
are performed naturally aligned. If desired, AccessType set to a value other than AnyAcc can be used to
force minimum access width. Notice that the parent object must be able to accommodate the AccessType
width. For example, an access type of WordAcc cannot read the last byte of an odd-length operation
region. The exceptions to natural alignment are the access types used for a non-linear SMBus device. These
will be discussed in detail below. Not all access types are meaningful for every type of operational region.

LockRule is a flag that indicates whether the Global Lock is to be used when accessing this field and is one
of the following: Lock or NoLock. If LockRule is set to Lock, accesses to modify the component data
objects will acquire and release the Global Lock. If both types of locking occur, the Global Lock is
acquired after the parent object Mutex.

UpdateRule is used to specify how the unmodified bits of a field are treated and is any one of the
following: Preserve, WriteAsOnes, or WriteAsZeros. For example, if a field defines a component data
object of 4 bits in the middle of a WordAcc region, when those 4 bits are modified the UpdateRule
specifies how the other 12 bits are treated.

FieldUnitList is a variable-length list of individual field unit definitions, separated by commas. Each entry
in the field unit list is one of the following:

FieldUnitName, BitLength

Offset (ByteOffset)

AccessAs (AccessType, AccessAttribute)

FieldUnitName is the ACPI name for the field unit (1 to 4 characters), and BitLength is the length of the
field unit in bits. Offset is used to specify the byte offset of the next defined field unit. This can be used
instead of defining the bit lengths that need to be skipped. AccessAs is used to define the access type and
attributes for the remaining field units within the list.

Description

Declares a series of named data objects whose data values are fields within a larger object. The fields are
parts of the object named by RegionName, but their names appear in the same scope as the Field term.

For example, the field operator allows a larger operation region that represents a hardware register to be
broken down into individual bit fields that can then be accessed by the bit field names. Extracting and
combining the component field from its parent is done automatically when the field is accessed.

When reading from a FieldUnit, returned values are normalized (shifted and masked to the proper length.)
The data type of an individual FieldUnit can be either a Buffer or an Integer, depending on the bit length
of the FieldUnit. If the FieldUnit is smaller than or equal to the size of an Integer (in bits), it will be treated
as an Integer. If the FieldUnit is larger than the size of an Integer, it will be treated as a Buffer. The size of
an Integer is indicated by the DSDT header’s Revision field. A revision less than 2 indicates that the size of
an Integer is 32 bits. A value greater than or equal to 2 signifies that the size of an Integer is 64 bits. For
more information about data types and FieldUnit type conversion rules, see section 18.2.5.7, “Data Type
Conversion Rules”.

Accessing the contents of a field data object provides access to the corresponding field within the parent
object. If the parent object supports Mutex synchronization, accesses to modify the component data objects
will acquire and release ownership of the parent object around the modification.

604 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

The following table relates region types declared with an OperationRegion term to the different access
types supported for each region.

Table 18-18 OperationRegion Region Types and Access Types

Region Type Permitted Access Type(s) Description

SystemMemory ByteAcc, WordAcc, DWordAcc,
QWordAcc, or AnyAcc

All access allowed

SystemIO ByteAcc, WordAcc, DWordAcc,
QWordAcc, or AnyAcc

All access allowed

PCI_Config ByteAcc, WordAcc, DWordAcc,
QWordAcc, or AnyAcc

All access allowed

EmbeddedControl ByteAcc Byte access only

SMBus BufferAcc Reads and writes to this operation region
involve the use of a region specific data buffer.
(See below.)

CMOS ByteAcc Byte access only

PciBarTarget ByteAcc, WordAcc, DWordAcc,
QWordAcc, or AnyAcc

All access allowed

IPMI BufferAcc Reads and writes to this operation region
involve the use of a region specific data buffer.
(See below.)

The named FieldUnit data objects are provided in the FieldList as a series of names and bit widths. Bits
assigned no name (or NULL) are skipped. The ASL compiler supports the Offset (ByteOffset) macro
within a FieldList to skip to the bit position of the supplied byte offset, and the AccessAs macro to change
access within the field list.

SMBus and IPMI regions are inherently non-linear, where each offset within the respective address space
represents a variable sized (0 to 32 bytes) field. Given this uniqueness, these operation regions include
restrictions on their field definitions and require the use of a region-specific data buffer when initiating
transactions. For more information on the SMBus data buffer format, see section 14, “ACPI System
Management Bus Interface Specification,”. For more information on the IPMI data buffer format, see
section 5.5.2.4.3, “Declaring IPMI Operation Regions”.

Example

OperationRegion (MIOC, PCI_Config, Zero, 0xFF)

Field (MIOC, AnyAcc, NoLock, Preserve)
{

Offset (0x58),
HXGB, 32,
HXGT, 32,
GAPE, 8,
MR0A, 4,
MR0B, 4

}

ACPI Source Language (ASL) Reference 605

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.45 FindSetLeftBit (Find First Set Left Bit)

Syntax

FindSetLeftBit (Source, Result) => Integer

Arguments

Source is evaluated as an Integer.

Description

The one-based bit location of the first MSb (most significant set bit) is optionally stored into Result. The
result of 0 means no bit was set, 1 means the left-most bit set is the first bit, 2 means the left-most bit set is
the second bit, and so on.

18.5.46 FindSetRightBit (Find First Set Right Bit)

Syntax

FindSetRightBit (Source, Result) => Integer

Arguments

Source is evaluated as an Integer.

Description

The one-based bit location of the most LSb (least significant set bit) is optionally stored in Result. The
result of 0 means no bit was set, 32 means the first bit set is the thirty-second bit, 31 means the first bit set
is the thirty-first bit, and so on.

18.5.47 FixedIO (Fixed IO Resource Descriptor Macro)

Syntax

FixedIO (AddressBase, RangeLength, DescriptorName) => Buffer

Arguments

AddressBase evaluates to a 16-bit integer. It describes the starting address of the fixed I/O range. The field
DescriptorName. _BAS is automatically created to refer to this portion of the resource descriptor.

RangeLength evaluates to an 8-bit integer. It describes the length of the fixed I/O range. The field
DescriptorName. _LEN is automatically created to refer to this portion of the resource descriptor.

DescriptorName evaluates to a name string which refers to the entire resource descriptor.

Description

The FixedIO macro evaluates to a buffer which contains a fixed I/O resource descriptor. The format of the
fixed I/O resource descriptor can be found in “Fixed Location I/O Port Descriptor ” (page 228). The macro
is designed to be used inside of a ResourceTemplate (page 544).

606 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.48 FromBCD (Convert BCD To Integer)

Syntax

FromBCD (BCDValue, Result) => Integer

Arguments

BCDValue is evaluated as an Integer.

Description

The FromBCD operation is used to convert BCDValue to a numeric format and store the numeric value
into Result.

18.5.49 Function (Declare Control Method)

Syntax

Function (FunctionName, ReturnType, ParameterTypes) {TermList}

Arguments

ReturnType is optional and specifies the type(s) of the object(s) returned by the method. If the method does
not return an object, then nothing is specified or UnknownObj is specified. To specify a single return type,
simply use the ObjectTypeKeyword (e.g. IntObj, PkgObj, etc.). To specify multiple possible return types,
enclose the comma-separated ObjectTypeKeywords with braces. For example: {IntObj, BuffObj}.

ParameterTypes specifies both the number and type of the method parameters. It is a comma-separated,
variable-length list of the expected object type or types for each of the method parameters, enclosed in
braces. For each parameter, the parameter type consists of either an ObjectTypeKeyword or a comma-
separated sub-list of ObjectTypeKeywords enclosed in braces. There can be no more than seven parameters
in total.

Description

Function declares a named package containing a series of terms that collectively represent a control
method. A control method is a procedure that can be invoked to perform computation. Function opens a
name scope.

System software executes a control method by executing the terms in the package in order. For more
information on method execution, see section 5.5.2, “Control Method Execution.”

The current namespace location used during name creation is adjusted to be the current location on the
namespace tree. Any names created within this scope are “below” the name of this package. The current
namespace location is assigned to the method package, and all namespace references that occur during
control method execution for this package are relative to that location.

Functions are equivalent to a Method that specifies NotSerialized. As such, a function should not create
any named objects, since a second thread that might re-enter the function will cause a fatal error if an
attempt is made to create the same named object twice.

Compatibility Note: New for ACPI 3.0

ACPI Source Language (ASL) Reference 607

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Example

The following block of ASL sample code shows the use of Function for defining a control method:

Function (EXAM, IntObj, {StrObj, {IntObj, StrObj}})
{

Name (Temp,””)
Store (Arg0, Temp) // could have used Arg1
Return (SizeOf (Concatenate (Arg1, Temp)))

}

This declaration is equivalent to:

Method (EXAM, 2, NotSerialized, 0, IntObj, {StrObj, {IntObj, StrObj}})
{
…
}

18.5.50 If (Conditional Execution)

Syntax

If (Predicate) {TermList}

Arguments

Predicate is evaluated as an Integer.

Description

If the Predicate is non-zero, the term list of the If term is executed.

Example

The following examples all check for bit 3 in Local0 being set, and clear it if set.

// example 1

If (And (Local0, 4))
{

XOr (Local0, 4, Local0)
}

// example 2

Store (4, Local2)
If (And (Local0, Local2))
{

XOr (Local0, Local2, Local0)
}

18.5.51 Include (Include Additional ASL File)

Syntax

Include (FilePathName)

Arguments

FilePathname is a StringData data type that contains the full OS file system path.

608 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Description

Include another file that contains ASL terms to be inserted in the current file of ASL terms. The file must
contain elements that are grammatically correct in the current scope.

Example

Include ("dataobj.asl")

18.5.52 Increment (Integer Increment)

Syntax

Increment (Addend) => Integer

Arguments

Addend is evaluated as an Integer.

Description

Add one to the Addend and place the result back in Addend. Equivalent to Add (Addend, 1, Addend).
Overflow conditions are ignored and the result of an overflow is zero.

18.5.53 Index (Indexed Reference To Member Object)

Syntax

Index (Source, Index, Destination) => ObjectReference

Arguments

Source is evaluated to a buffer, string, or package data type. Index is evaluated to an integer. The reference
to the nth object (where n = Index) within Source is optionally stored as a reference into Destination.

Description

When Source evaluates to a Buffer, Index returns a reference to a Buffer Field containing the nth byte in
the buffer. When Source evaluates to a String, Index returns a reference to a Buffer Field containing the nth
character in the string. When Source evaluates to a Package, Index returns a reference to the nth object in
the package.

18.5.53.1 Index with Packages

The following example ASL code shows a way to use the Index term to store into a local variable the sixth
element of the first package of a set of nested packages:

ACPI Source Language (ASL) Reference 609

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Name (IO0D, Package () {
Package () {

0x01, 0x03F8, 0x03F8, 0x01, 0x08, 0x01, 0x25, 0xFF, 0xFE, 0x00, 0x00
},
Package () {

0x01, 0x02F8, 0x02F8, 0x01, 0x08, 0x01, 0x25, 0xFF, 0xBE, 0x00, 0x00
},
Package () {

0x01, 0x03E8, 0x03E8, 0x01, 0x08, 0x01, 0x25, 0xFF, 0xFA, 0x00, 0x00
},
Package () {

x01, 0x02E8, 0x02E8, 0x01, 0x08, 0x01, 0x25, 0xFF, 0xBA, 0x00, 0x00
},
Package() {

0x01, 0x0100, 0x03F8, 0x08, 0x08, 0x02, 0x25, 0x20, 0x7F, 0x00, 0x00
}

})

// Get the 6th element of the first package

Store (DeRefOf (Index (DeRefOf (Index (IO0D, 0)), 5)), Local0)

Note: DeRefOf is necessary in the first operand of the Store operator in order to get the actual object,
rather than just a reference to the object. If DeRefOf were not used, then Local0 would contain an object
reference to the sixth element in the first package rather than the number 1.

18.5.53.2 Index with Buffers

The following example ASL code shows a way to store into the third byte of a buffer:

Name (BUFF, Buffer () {0x01, 0x02, 0x03, 0x04, 0x05})

// Store 0x55 into the third byte of the buffer

Store (0x55, Index (BUFF, 2))

The Index operator returns a reference to an 8-bit Buffer Field (similar to that created using
CreateByteField).

If Source is evaluated to a buffer data type, the ObjectReference refers to the byte at Index within Source. If
Source is evaluated to a buffer data type, a Store operation will only change the byte at Index within
Source.

The following example ASL code shows the results of a series of Store operations:

Name (SRCB, Buffer () {0x10, 0x20, 0x30, 0x40})
Name (BUFF, Buffer () {0x1, 0x2, 0x3, 0x4})

The following will store 0x78 into the 3rd byte of the destination buffer:

Store (0x12345678, Index (BUFF, 2))

The following will store 0x10 into the 2nd byte of the destination buffer:

Store (SRCB, Index (BUFF, 1))

The following will store 0x41 (an ‘A’) into the 4th byte of the destination buffer:

Store (“ABCDEFGH”, Index (BUFF, 3))

Compatibility Note: First introduced in ACPI 2.0. In ACPI 1.0, the behavior of storing data larger than 8-
bits into a buffer using Index was undefined.

610 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.53.3 Index with Strings

The following example ASL code shows a way to store into the 3rd character in a string:

Name (STR, “ABCDEFGHIJKL”)

// Store ‘H’ (0x48) into the third character to the string

Store (“H”, Index (STR, 2))

The Index operator returns a reference to an 8-bit Buffer Field (similar to that created using
CreateByteField).

Compatibility Note: First introduced in ACPI 2.0.

18.5.54 IndexField (Declare Index/Data Fields)

Syntax

IndexField (IndexName, DataName, AccessType, LockRule, UpdateRule)
{FieldUnitList}

Arguments

IndexName and DataName refer to field unit objects. AccessType, LockRule, UpdateRule, and FieldList are
the same format as the Field term.

Description

Creates a series of named data objects whose data values are fields within a larger object accessed by an
index/data-style reference to IndexName and DataName.

This encoding is used to define named data objects whose data values are fields within an index/data
register pair. This provides a simple way to declare register variables that occur behind a typical index and
data register pair.

Accessing the contents of an indexed field data object will automatically occur through the DataName
object by using an IndexName object aligned on an AccessType boundary, with synchronization occurring
on the operation region that contains the index data variable, and on the Global Lock if specified by
LockRule.

The value written to the IndexName register is defined to be a byte offset that is aligned on an AccessType
boundary. For example, if AccessType is DWordAcc, valid index values are 0, 4, 8, etc. This value is
always a byte offset and is independent of the width or access type of the DataName register.

Example

The following is a block of ASL sample code using IndexField:

Creates an index/data register in system I/O space made up of 8-bit registers.
 Creates a FET0 field within the indexed range.

ACPI Source Language (ASL) Reference 611

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Method (EX1) {
// Define a 256-byte operational region in SystemIO space
// and name it GIO0

OperationRegion (GIO0, 1, 0x125, 0x100)

// Create a field named Preserve structured as a sequence
// of index and data bytes

Field (GIO0, ByteAcc, NoLock, WriteAsZeros) {
IDX0, 8,
DAT0, 8,

.

.

.
}
// Create an IndexField within IDX0 & DAT0 which has
// FETs in the first two bits of indexed offset 0,
// and another 2 FETs in the high bit on indexed
// 2F and the low bit of indexed offset 30

IndexField (IDX0, DAT0, ByteAcc, NoLock, Preserve) {
FET0, 1,
FET1, 1,
Offset (0x2f), // skip to byte offset 2f
, 7, // skip another 7 bits
FET3, 1,
FET4, 1

}

// Clear FET3 (index 2F, bit 7)

Store (Zero, FET3)

} // End EX1

18.5.55 Interrupt (Interrupt Resource Descriptor Macro)

Syntax

Interrupt (ResourceUsage, EdgeLevel, ActiveLevel, Shared,
ResourceSourceIndex, ResourceSource, DescriptorName) {InterruptList} =>
Buffer

Arguments

ResourceUsage describes whether the device consumes the specified interrupt (ResourceConsumer) or
produces it for use by a child device (ResourceProducer). If nothing is specified, then ResourceConsumer
is assumed.

EdgeLevel describes whether the interrupt is edge triggered (Edge) or level triggered (Level). The field
DescriptorName. _HE is automatically created to refer to this portion of the resource descriptor, where ‘1’
is Edge and ‘0’ is Level.

ActiveLevel describes whether the interrupt is active-high (ActiveHigh) or active-low (ActiveLow). The
field DescriptorName. _LL is automatically created to refer to this portion of the resource descriptor, where
‘1’ is ActiveHigh and ‘0’ is ActiveLow.

Shared describes whether the interrupt can be shared with other devices (Shared) or not (Exclusive). The
field DescriptorName. _SHR is automatically created to refer to this portion of the resource descriptor,
where ‘1’ is Shared and ‘0’ is Exclusive. If nothing is specified, then Exclusive is assumed.

ResourceSourceIndex evaluates to an integer between 0x00 and 0xFF and describes the resource source
index. If it is not specified, then it is not generated. If this argument is specified, the ResourceSource
argument must also be specified.

612 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ResourceSource evaluates to a string which uniquely identifies the resource source. If it is not specified, it
is not generated. If this argument is specified, but the ResourceSourceIndex argument is not specified, a
zero value is assumed.

DescriptorName evaluates to a name string which refers to the entire resource descriptor.

InterruptList is a comma-delimited list on integers, at least one value is required. Each integer represents a
32-bit interrupt number. At least one interrupt must be defined, and there may be no duplicates in the list.
The field “DescriptorName. _INT” is automatically created to refer to this portion of the resource
descriptor.

Description

The Interrupt macro evaluates to a buffer that contains an interrupt resource descriptor. The format of the
interrupt resource descriptor can be found in “Extended Interrupt Descriptor ” (page 249). The macro is
designed to be used inside of a ResourceTemplate (page 544).

18.5.56 IO (IO Resource Descriptor Macro)

Syntax

IO (Decode, AddressMin, AddressMax, AddressAlignment, RangeLength,
DescriptorName) => Buffer

Argument

Decode describes whether the I/O range uses 10-bit decode (Decode10) or 16-bit decode (Decode16). The
field DescriptorName. _DEC is automatically created to refer to this portion of the resource descriptor,
where ‘1’ is Decode16 and ‘0’ is Decode10.

AddressMin evaluates to a 16-bit integer that specifies the minimum acceptable starting address for the I/O
range. It must be an even multiple of AddressAlignment. The field DescriptorName._MIN is automatically
created to refer to this portion of the resource descriptor.

AddressMax evaluates to a 16-bit integer that specifies the maximum acceptable starting address for the I/O
range. It must be an even multiple of AddressAlignment. The field DescriptorName._MAX is automatically
created to refer to this portion of the resource descriptor.

AddressAlignment evaluates to an 8-bit integer that specifies the alignment granularity for the I/O address
assigned. The field DescriptorName. _ALN is automatically created to refer to this portion of the resource
descriptor.

RangeLength evaluates to an 8-bit integer that specifies the number of bytes in the I/O range. The field
DescriptorName. _LEN is automatically created to refer to this portion of the resource descriptor.

DescriptorName is an optional argument that specifies a name for an integer constant that will be created in
the current scope that contains the offset of this resource descriptor within the current resource template
buffer. The predefined descriptor field names may be appended to this name to access individual fields
within the descriptor via the Buffer Field operators.

Description

The IO macro evaluates to a buffer which contains an IO resource descriptor. The format of the IO
descriptor can be found in “I/O Port Descriptor” (page 227). The macro is designed to be used inside of a
ResourceTemplate (page 544).

ACPI Source Language (ASL) Reference 613

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.57 IRQ (Interrupt Resource Descriptor Macro)

Syntax

IRQ (EdgeLevel, ActiveLevel, Shared, DescriptorName) {InterruptList} =>
Buffer

Arguments

EdgeLevel describes whether the interrupt is edge triggered (Edge) or level triggered (Level). The field
DescriptorName. _HE is automatically created to refer to this portion of the resource descriptor, where ‘1’
is Edge and ActiveHigh and ‘0’ is Level and ActiveLow.

ActiveLevel describes whether the interrupt is active-high (ActiveHigh) or active-low (ActiveLow). The
field DescriptorName. _LL is automatically created to refer to this portion of the resource descriptor, where
‘1’ is Edge and ActiveHigh and ‘0’ is Level and ActiveLow.

Shared describes whether the interrupt can be shared with other devices (Shared) or not (Exclusive). The
field DescriptorName. _SHR is automatically created to refer to this portion of the resource descriptor,
where ‘1’ is Shared and ‘0’ is Exclusive. If nothing is specified, then Exclusive is assumed.

DescriptorName is an optional argument that specifies a name for an integer constant that will be created in
the current scope that contains the offset of this resource descriptor within the current resource template
buffer. The predefined descriptor field names may be appended to this name to access individual fields
within the descriptor via the Buffer Field operators.

InterruptList is a comma-delimited list of integers in the range 0 through 15, at least one value is required.
There may be no duplicates in the list.

Description

The IRQ macro evaluates to a buffer that contains an IRQ resource descriptor. The format of the IRQ
descriptor can be found in “IRQ Descriptor” (page 225). The macro produces the three-byte form of the
descriptor. The macro is designed to be used inside of a ResourceTemplate (page 544).

18.5.58 IRQNoFlags (Interrupt Resource Descriptor Macro)

Syntax

IRQNoFlags (DescriptorName) {InterruptList} => Buffer

Arguments

DescriptorName is an optional argument that specifies a name for an integer constant that will be created in
the current scope that contains the offset of this resource descriptor within the current resource template
buffer.

InterruptList is a comma-delimited list of integers in the range 0 through 15, at least one value is required.
There may be no duplicates in the list Description

The IRQNoFlags macro evaluates to a buffer which contains an active-high, edge-triggered IRQ resource
descriptor. The format of the IRQ descriptor can be found in IRQ Descriptor (page 225). The macro
produces the two-byte form of the descriptor. The macro is designed to be used inside of a
ResourceTemplate (page 544).

614 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.59 LAnd (Logical And)

Syntax

LAnd (Source1, Source2) => Boolean

Arguments

Source1 and source2 are evaluated as integers.

Description

If both values are non-zero, True is returned: otherwise, False is returned.

18.5.60 LEqual (Logical Equal)

Syntax

LEqual (Source1, Source2) => Boolean

Arguments

Source1 and Source2 must each evaluate to an integer, a string, or a buffer. The data type of Source1
dictates the required type of Source2. Source2 is implicitly converted if necessary to match the type of
Source1.

Description

If the values are equal, True is returned; otherwise, False is returned. For integers, a numeric compare is
performed. For strings and buffers, True is returned only if both lengths are the same and the result of a
byte-wise compare indicates exact equality.

18.5.61 LGreater (Logical Greater)

Syntax

LGreater (Source1, Source2) => Boolean

Arguments

Source1 and Source2 must each evaluate to an integer, a string, or a buffer. The data type of Source1
dictates the required type of Source2. Source2 is implicitly converted if necessary to match the type of
Source1.

Description

If Source1 is greater than Source2, True is returned; otherwise, False is returned. For integers, a numeric
comparison is performed. For strings and buffers, a lexicographic comparison is performed. True is
returned if a byte-wise (unsigned) compare discovers at least one byte in Source1 that is numerically
greater than the corresponding byte in Source2. False is returned if at least one byte in Source1 is
numerically less than the corresponding byte in Source2. In the case of byte-wise equality, True is returned
if the length of Source1 is greater than Source2, False is returned if the length of Source1 is less than or
equal to Source2.

ACPI Source Language (ASL) Reference 615

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.62 LGreaterEqual (Logical Greater Than Or Equal)

Syntax

LGreaterEqual (Source1, Source2) => Boolean

Arguments

Source1 and Source2 must each evaluate to an integer, a string, or a buffer. The data type of Source1
dictates the required type of Source2. Source2 is implicitly converted if necessary to match the type of
Source1.

Description

If Source1 is greater than or equal to Source2, True is returned; otherwise, False is returned. Equivalent to
LNot(LLess()). See the description of the LLess operator.

18.5.63 LLess (Logical Less)

Syntax

LLess (Source1, Source2) => Boolean

Arguments

Source1 and Source2 must each evaluate to an integer, a string, or a buffer. The data type of Source1
dictates the required type of Source2. Source2 is implicitly converted if necessary to match the type of
Source1.

Description

If Source1 is less than Source2, True is returned; otherwise, False is returned. For integers, a numeric
comparison is performed. For strings and buffers, a lexicographic comparison is performed. True is
returned if a byte-wise (unsigned) compare discovers at least one byte in Source1 that is numerically less
than the corresponding byte in Source2. False is returned if at least one byte in Source1 is numerically
greater than the corresponding byte in Source2. In the case of byte-wise equality, True is returned if the
length of Source1 is less than Source2, False is returned if the length of Source1 is greater than or equal to
Source2.

18.5.64 LLessEqual (Logical Less Than Or Equal)

Syntax

LLessEqual (Source1, Source2) => Boolean

Arguments

Source1 and Source2 must each evaluate to an integer, a string, or a buffer. The data type of Source1
dictates the required type of Source2. Source2 is implicitly converted if necessary to match the type of
Source1.

Description

If Source1 is less than or equal to Source2, True is returned; otherwise False is returned. Equivalent to
LNot(LGreater()). See the description of the LGreater operator.

616 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.65 LNot (Logical Not)

Syntax

LNot (Source) => Boolean

Arguments

Source is evaluated as an integer.

Description

If the value is zero True is returned; otherwise, False is returned.

18.5.66 LNotEqual (Logical Not Equal))

Syntax

LNotEqual (Source1, Source2) => Boolean

Arguments

Source1 and Source2 must each evaluate to an integer, a string, or a buffer. The data type of Source1
dictates the required type of Source2. Source2 is implicitly converted if necessary to match the type of
Source1.

Description

If Source1 is not equal to Source2, True is returned; otherwise False is returned. Equivalent to
LNot(LEqual()).See the description of the LEqual operator.

18.5.67 Load (Load Definition Block)

Syntax

Load (Object, DDBHandle)

Arguments

The Object parameter can either refer to an operation region field or an operation region directly. If the
object is an operation region, the operation region must be in SystemMemory space. The Definition Block
should contain an ACPI DESCRIPTION_HEADER of type SSDT. The Definition Block must be totally
contained within the supplied operation region or operation region field. OSPM reads this table into
memory, the checksum is verified, and then it is loaded into the ACPI namespace. The DDBHandle
parameter is the handle to the Definition Block that can be used to unload the Definition Block at a future
time via the Unload operator.

Description

Performs a run-time load of a Definition Block. Any table referenced by Load must be in memory marked
as AddressRangeReserved or AddressRangeNVS.

The OS can also check the OEM Table ID and Revision ID against a database for a newer revision
Definition Block of the same OEM Table ID and load it instead.

The default namespace location to load the Definition Block is relative to the root of the namespace. The
new Definition Block can override this by specifying absolute names or by adjusting the namespace
location using the Scope operator.

ACPI Source Language (ASL) Reference 617

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Loading a Definition Block is a synchronous operation. Upon completion of the operation, the Definition
Block has been loaded. The control methods defined in the Definition Block are not executed during load
time.

18.5.68 LoadTable (Load Definition Block From XSDT)

Syntax

LoadTable (SignatureString, OEMIDString, OEMTableIDString, RootPathString,
ParameterPathString, ParameterData) => DDBHandle

Arguments

The XSDT is searched for a table where the Signature field matches SignatureString, the OEM ID field
matches OEMIDString, and the OEM Table ID matches OEMTableIDString. All comparisons are case
sensitive. If the SignatureString is greater than four characters, the OEMIDString is greater than six
characters, or the OEMTableID is greater than eight characters, a run-time error is generated. The OS can
also check the OEM Table ID and Revision ID against a database for a newer revision Definition Block of
the same OEM Table ID and load it instead.

The RootPathString specifies the root of the Definition Block. It is evaluated using normal scoping rules,
assuming that the scope of the LoadTable instruction is the current scope. The new Definition Block can
override this by specifying absolute names or by adjusting the namespace location using the Scope
operator. If RootPathString is not specified, “\” is assumed

If ParameterPathString and ParameterData are specified, the data object specified by ParameterData is
stored into the object specified by ParameterPathString after the table has been added into the namespace.
If the first character of ParameterPathString is a backslash (‘\’) or caret (‘^’) character, then the path of the
object is ParameterPathString. Otherwise, it is RootPathString.ParameterPathString. If the specified
object does not exist, a run-time error is generated.

The handle of the loaded table is returned. If no table matches the specified signature, then 0 is returned.

Description

Performs a run-time load of a Definition Block from the XSDT. Any table referenced by LoadTable must
be in memory marked by AddressRangeReserved or AddressRangeNVS. Note: OSPM loads the DSDT and
all SSDTs during initialization. As such, Definition Blocks to be conditionally loaded via LoadTable must
contain signatures other than “SSDT”.

Loading a Definition Block is a synchronous operation. Upon completion of the operation, the Definition
Block has been loaded. The control methods defined in the Definition Block are not executed during load
time.

Example

Store (LoadTable (“OEM1”, ”MYOEM”, ”TABLE1”, ”_SB.PCI0”,”MYD”,
Package () {0,”_SB.PCI0”}), Local0)

This operation would search through the RSDT or XSDT for a table with the signature “OEM1,” the OEM
ID of “MYOEM,” and the table ID of “TABLE1.” If not found, it would store Zero in Local0. Otherwise,
it will store a package containing 0 and “_SB.PCI0” into the variable at _SB.PCI0.MYD.

618 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.69 Localx (Method Local Data Objects)

Syntax

Local0 | Local1 | Local2 | Local3 | Local4 | Local5 | Local6 | Local7

Description

Up to 8 local objects can be referenced in a control method. On entry to a control method, these objects are
uninitialized and cannot be used until some value or reference is stored into the object. Once initialized,
these objects are preserved in the scope of execution for that control method.

18.5.70 LOr (Logical Or)

Syntax

LOr (Source1, Source2) => Boolean

Arguments

Source1 and Source2 are evaluated as integers.

Description

If either value is non-zero, True is returned; otherwise, False is returned.

18.5.71 Match (Find Object Match)

Syntax

Match (SearchPackage, Op1, MatchObject1, Op2, MatchObject2, StartIndex) =>
Ones | Integer

Arguments

SearchPackage is evaluated to a package object and is treated as a one-dimension array. Each package
element must evaluate to either an integer, a string, or a buffer. Uninitialized package elements and
elements that do not evaluate to integers, strings, or buffers are ignored. Op1 and Op2 are match operators.
MatchObject1 and MatchObject2 are the objects to be matched and must each evaluate to either an integer,
a string, or a buffer. StartIndex is the starting index within the SearchPackage.

Description

A comparison is performed for each element of the package, starting with the index value indicated by
StartIndex (0 is the first element). If the element of SearchPackage being compared against is called P[i],
then the comparison is:

If (P[i] Op1 MatchObject1) and (P[i] Op2 MatchObject2) then Match => i is returned.

If the comparison succeeds, the index of the element that succeeded is returned; otherwise, the constant
object Ones is returned. The data type of the MatchObject dictates the required type of the package
element. If necessary, the package element is implicitly converted to match the type of the MatchObject. If
the implicit conversion fails for any reason, the package element is ignored (no match.)

Op1 and Op2 have the values and meanings listed in the Table 18-19.

ACPI Source Language (ASL) Reference 619

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 18-19 Match Term Operator Meanings

Operator Encoding Macro

TRUE – A don’t care, always returns TRUE 0 MTR

EQ – Returns TRUE if P[i] == MatchObject 1 MEQ

LE – Returns TRUE if P[i] <= MatchObject 2 MLE

LT – Returns TRUE if P[i] < MatchObject 3 MLT

GE – Returns TRUE if P[i] >= MatchObject 4 MGE

GT – Returns TRUE if P[i] > MatchObject 5 MGT

Example

Following are some example uses of Match:

Name (P1,
Package () {1981, 1983, 1985, 1987, 1989, 1990, 1991, 1993, 1995, 1997, 1999, 2001}
)

// match 1993 == P1[i]
Match (P1, MEQ, 1993, MTR, 0, 0) // -> 7, since P1[7] == 1993

// match 1984 == P1[i]
Match (P1, MEQ, 1984, MTR, 0, 0) // -> ONES (not found)

// match P1[i] > 1984 and P1[i] <= 2000
Match (P1, MGT, 1984, MLE, 2000, 0) // -> 2, since P1[2]>1984 and P1[2]<=2000

// match P1[i] > 1984 and P1[i] <= 2000, starting with 3rd element
Match (P1, MGT, 1984, MLE, 2000, 3) // -> 3, first match at or past Start

18.5.72 Memory24 (Memory Resource Descriptor Macro)

Syntax

Memory24 (ReadAndWrite, AddressMinimum, AddressMaximum, AddressAlignment,
RangeLength, DescriptorName)

Arguments

ReadAndWrite specifies whether or not the memory region is read-only (ReadOnly) or read/write
(ReadWrite). If nothing is specified, then ReadWrite is assumed. The 1-bit field DescriptorName._RW is
automatically created to refer to this portion of the resource descriptor, where ‘1’ is ReadWrite and ‘0’ is
ReadOnly.

AddressMinimum evaluates to a 16-bit integer that specifies bits [8:23] of the lowest possible base address
of the memory range. All other bits are assumed to be zero. The value must be an even multiple of
AddressAlignment. The 16-bit field DescriptorName._MIN is automatically created to refer to this portion
of the resource descriptor.

AddressMaximum evaluates to a 16-bit integer that specifies bits [8:23] of the highest possible base address
of the memory range. All other bits are assumed to be zero. The value must be an even multiple of
AddressAlignment. The 16-bit field DescriptorName._MAX is automatically created to refer to this portion
of the resource descriptor.

AddressAlignment evaluates to a 16-bit integer that specifies bits [0:15] of the required alignment for the
memory range. All other bits are assumed to be zero. The address selected must be an even multiple of this
value. The 16-bit field DescriptorName. _ALN is automatically created to refer to this portion of the
resource descriptor.

620 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

RangeLength evaluates to a 16-bit integer that specifies the total number of bytes decoded in the memory
range. The 16-bit field DescriptorName. _LEN is automatically created to refer to this portion of the
resource descriptor. The range length provides the length of the memory range in 256 byte blocks.

DescriptorName is an optional argument that specifies a name for an integer constant that will be created in
the current scope that contains the offset of this resource descriptor within the current resource template
buffer. The predefined descriptor field names may be appended to this name to access individual fields
within the descriptor via the Buffer Field operators.

Description

The Memory24 macro evaluates to a buffer which contains an 24-bit memory descriptor. The format of the
24-bit memory descriptor can be found in “24-Bit Memory Range Descriptor ” (page 231). The macro is
designed to be used inside of a ResourceTemplate (page 544).

NOTE: The use of Memory24 is deprecated and should not be used in new designs.

18.5.73 Memory32 (Memory Resource Descriptor Macro)

Syntax

Memory32 (ReadAndWrite, AddressMinimum, AddressMaximum, AddressAlignment,
RangeLength, DescriptorName)

Arguments

ReadAndWrite specifies whether or not the memory region is read-only (ReadOnly) or read/write
(ReadWrite). If nothing is specified, then ReadWrite is assumed. The 1-bit field DescriptorName._RW is
automatically created to refer to this portion of the resource descriptor, where ‘1’ is ReadWrite and ‘0’ is
ReadOnly.

AddressMinimum evaluates to a 32-bit integer that specifies the lowest possible base address of the memory
range. The value must be an even multiple of AddressAlignment. The 32-bit field DescriptorName._MIN is
automatically created to refer to this portion of the resource descriptor.

AddressMaximum evaluates to a 32-bit integer that specifies the highest possible base address of the
memory range. The value must be an even multiple of AddressAlignment. The 32-bit field
DescriptorName._MAX is automatically created to refer to this portion of the resource descriptor.

AddressAlignment evaluates to a 32-bit integer that specifies the required alignment for the memory range.
The address selected must be an even multiple of this value. The 32-bit field DescriptorName. _ALN is
automatically created to refer to this portion of the resource descriptor.

RangeLength evaluates to a 32-bit integer that specifies the total number of bytes decoded in the memory
range. The 32-bit field DescriptorName. _LEN is automatically created to refer to this portion of the
resource descriptor. The range length provides the length of the memory range in 1 byte blocks.

DescriptorName is an optional argument that specifies a name for an integer constant that will be created in
the current scope that contains the offset of this resource descriptor within the current resource template
buffer. The predefined descriptor field names may be appended to this name to access individual fields
within the descriptor via the Buffer Field operators.

Description

The Memory32 macro evaluates to a buffer which contains a 32-bit memory descriptor, which describes a
memory range with a minimum, a maximum and an alignment. The format of the 32-bit memory descriptor
can be found in “32-Bit Memory Range Descriptor ” (page 232). The macro is designed to be used inside
of a ResourceTemplate (page 544).

ACPI Source Language (ASL) Reference 621

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.74 Memory32Fixed (Memory Resource Descriptor Macro)

Syntax

Memory32Fixed (ReadAndWrite, AddressBase, RangeLength, DescriptorName)

Arguments

ReadAndWrite specifies whether or not the memory region is read-only (ReadOnly) or read/write
(ReadWrite). If nothing is specified, then ReadWrite is assumed. The 1-bit field DescriptorName._RW is
automatically created to refer to this portion of the resource descriptor, where ‘1’ is ReadWrite and ‘0’ is
ReadOnly.

AddressBase evaluates to a 32-bit integer that specifies the base address of the memory range. The 32-bit
field DescriptorName. _BAS is automatically created to refer to this portion of the resource descriptor.

RangeLength evaluates to a 32-bit integer that specifies the total number of bytes decoded in the memory
range. The 32-bit field DescriptorName. _LEN is automatically created to refer to this portion of the
resource descriptor.

DescriptorName is an optional argument that specifies a name for an integer constant that will be created in
the current scope that contains the offset of this resource descriptor within the current resource template
buffer. The predefined descriptor field names may be appended to this name to access individual fields
within the descriptor via the Buffer Field operators.

Description

The Memory32Fixed macro evaluates to a buffer which contains a 32-bit memory descriptor, which
describes a fixed range of memory addresses. The format of the fixed 32-bit memory descriptor can be
found in 32-Bit Fixed Memory Range Descriptor (page 233). The macro is designed to be used inside of a
ResourceTemplate (page 544).

18.5.75 Method (Declare Control Method)

Syntax

Method (MethodName, NumArgs, SerializeRule, SyncLevel, ReturnType,
ParameterTypes) {TermList}

Arguments

MethodName is evaluated as a Namestring data type.

NumArgs is optional and is the required number of arguments to be passed to the method, evaluated as an
Integer data type. If not specified, the default value is zero arguments. Up to 7 arguments may be passed to
a method. These arguments may be referenced from within the method as Arg0 through Arg6.

SerializeRule is optional and is a flag that defines whether the method is serialized or not and is one of the
following: Serialized or NotSerialized. A method that is serialized cannot be reentered by additional
threads. If not specified, the default is NotSerialized.

SyncLevel is optional and specifies the synchronization level for the method (0 – 15). If not specified, the
default sync level is zero.

ReturnType is optional and specifies the type(s) of the object(s) returned by the method. If the method does
not return an object, then nothing is specified or UnknownObj is specified. To specify a single return type,
simply use the ObjectTypeKeyword (e.g. IntObj, PkgObj, etc.). To specify multiple possible return types,
enclose the comma-separated ObjectTypeKeywords with braces. For example: {IntObj, BuffObj}.

622 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ParameterTypes is optional and specifies the type of the method parameters. It is a comma-separated,
variable-length list of the expected object type or types for each of the method parameters, enclosed in
braces. For each parameter, the parameter type consists of either an ObjectTypeKeyword or a comma-
separated sub-list of ObjectTypeKeywords enclosed in braces. If ParameterTypes is specified, the number
of parameters must match NumArgs.

TermList is a variable-length list of executable ASL statements representing the body of the control
method.

Description

Creates a new control method of name MethodName. This is a named package containing a series of object
references that collectively represent a control method, which is a procedure that can be invoked to perform
computation. Method opens a name scope.

System software executes a control method by referencing the objects in the package in order. For more
information on method execution, see section 5.5.2, “Control Method Execution.”

The current namespace location used during name creation is adjusted to be the current location on the
namespace tree. Any names created within this scope are “below” the name of this package. The current
namespace location is assigned to the method package, and all namespace references that occur during
control method execution for this package are relative to that location.

If a method is declared as Serialized, an implicit mutex associated with the method object is acquired at the
specified SyncLevel. If no SyncLevel is specified, SyncLevel 0 is assumed. The serialize rule can be used to
prevent reentering of a method. This is especially useful if the method creates namespace objects. Without
the serialize rule, the reentering of a method will fail when it attempts to create the same namespace object.

There are eight local variables automatically available for each method, referenced as Local0 through
Local7. These locals may be used to store any type of ASL object.

Also notice that all namespace objects created by a method have temporary lifetime. When method
execution exits, the created objects will be destroyed.

Examples

The following block of ASL sample code shows a use of Method for defining a control method that turns
on a power resource.

Method (_ON) {
Store (One, GIO.IDEP) // assert power
Sleep (10) // wait 10ms
Store (One, GIO.IDER) // de-assert reset#
Stall (10) // wait 10us
Store (Zero, GIO.IDEI) // de-assert isolation

}

This method is an implementation of _SRS (Set Resources). It shows the use of a method argument and
two method locals.

Method (_SRS, 1, NotSerialized)
{

CreateWordField (Arg0, One, IRQW)
Store (_SB.PCI0.PID1.IENA, Local1)
Or (IRQW, Local1, Local1)
Store (Local1, _SB.PCI0.PID1.IENA)
FindSetRightBit (IRQW, Local0)
If (Local0)
{

Decrement (Local0)
Store (Local0, _SB.PCI0.PID1.IN01)

}
}

ACPI Source Language (ASL) Reference 623

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.76 Mid (Extract Portion of Buffer or String)

Syntax

Mid (Source, Index, Length, Result) => Buffer or String

Arguments

Source is evaluated as either a Buffer or String. Index and Length are evaluated as Integers.

Description

If Source is a buffer, then Length bytes, starting with the Indexth byte (zero-based) are optionally copied
into Result. If Index is greater than or equal to the length of the buffer, then the result is an empty buffer.
Otherwise, if Index + Length is greater than or equal to the length of the buffer, then only bytes up to and
including the last byte are included in the result.

If Source is a string, then Length characters, starting with the Indexth character (zero-based) are optionally
copied into Result. If Index is greater than or equal to the length of the buffer, then the result is an empty
string. Otherwise, if Index + Length is greater than or equal to the length of the string, then only bytes up to
an including the last character are included in the result.

18.5.77 Mod (Integer Modulo)

Syntax

Mod (Dividend, Divisor, Result) => Integer

Arguments

Dividend and Divisor are evaluated as Integers.

Description

The Dividend is divided by Divisor, and then the resulting remainder is optionally stored into Result. If
Divisor evaluates to zero, a fatal exception is generated.

18.5.78 Multiply (Integer Multiply)

Syntax

Multiply (Multiplicand, Multiplier, Result) => Integer

Arguments

Multiplicand and Multiplier are evaluated as Integers.

Description

The Multiplicand is multiplied by Multiplier and the result is optionally stored into Result. Overflow
conditions are ignored and results are undefined.

624 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.79 Mutex (Declare Synchronization/Mutex Object)

Syntax

Mutex (MutexName, SyncLevel)

Arguments

Creates a data mutex synchronization object named MutexName, with a synchronization level from 0 to 15
as specified by the Integer SyncLevel.

Description

A synchronization object provides a control method with a mechanism for waiting for certain events. To
prevent deadlocks, wherever more than one synchronization object must be owned, the synchronization
objects must always be released in the order opposite the order in which they were acquired.

The SyncLevel parameter declares the logical nesting level of the synchronization object. The current sync
level is maintained internally for a thread, and represents the greatest SyncLevel among mutex objects that
are currently acquired by the thread. The SyncLevel of a thread before acquiring any mutexes is zero. The
SyncLevel of the Global Lock (_GL) is zero.

All Acquire terms must refer to a synchronization object with a SyncLevel that is equal or greater than the
current level, and all Release terms must refer to a synchronization object with a SyncLevel that is equal to
the current level.

Mutex synchronization provides the means for mutually exclusive ownership. Ownership is acquired using
an Acquire term and is released using a Release term. Ownership of a Mutex must be relinquished before
completion of any invocation. For example, the top-level control method cannot exit while still holding
ownership of a Mutex. Acquiring ownership of a Mutex can be nested (can be acquired multiple times by
the same thread).

18.5.80 Name (Declare Named Object)

Syntax

Name (ObjectName, Object)

Arguments

Creates a new object named ObjectName. Attaches Object to ObjectName in the Global ACPI namespace.

Description

Creates ObjectName in the namespace, which references the Object.

Example

The following example creates the name PTTX in the root of the namespace that references a package.

Name (\PTTX, // Port to Port Translate Table
Package () {Package () {0x43, 0x59}, Package) {0x90, 0xFF}}

)

The following example creates the name CNT in the root of the namespace that references an integer data
object with the value 5.

Name (\CNT, 5)

ACPI Source Language (ASL) Reference 625

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.81 NAnd (Integer Bitwise Nand)

Syntax

NAnd (Source1, Source2, Result) => Integer

Arguments

Source1 and Source2 are evaluated as Integers.

Description

A bitwise NAND is performed and the result is optionally stored in Result.

18.5.82 NoOp Code (No Operation)

Syntax

NoOp

Description

This operation has no effect.

18.5.83 NOr (Integer Bitwise Nor)

Syntax

NOr (Source1, Source2, Result) => Integer

Arguments

Source1 and Source2 are evaluated as Integers.

Description

A bitwise NOR is performed and the result is optionally stored in Result.

18.5.84 Not (Integer Bitwise Not)

Syntax

Not (Source, Result) => Integer

Arguments

Source is evaluated as an integer data type.

Description

A bitwise NOT is performed and the result is optionally stored in Result.

626 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.85 Notify (Notify Object of Event)

Syntax

Notify (Object, NotificationValue)

Arguments

Notifies the OS that the NotificationValue for the Object has occurred. Object must be a reference to a
device, processor, or thermal zone object.

Description

Object type determines the notification values. For example, the notification values for a thermal zone
object are different from the notification values used for a device object. Undefined notification values are
treated as reserved and are ignored by the OS.

For lists of defined Notification values, see section 5.6.5, “Device Object Notifications.”

18.5.86 ObjectType (Get Object Type)

Syntax

ObjectType (Object) => Integer

Arguments

Object is any valid object.

Description

The execution result of this operation is an integer that has the numeric value of the object type for Object.

The object type codes are listed in Table 18-20. Notice that if this operation is performed on an object
reference such as one produced by the Alias, Index, or RefOf statements, the object type of the base object
is returned. For typeless objects such as predefined scope names (in other words, _SB, _GPE, etc.), the
type value 0 (Uninitialized) is returned.

Table 18-20 Values Returned By the ObjectType Operator

Value Object

0 Uninitialized

1 Integer

2 String

3 Buffer

4 Package

5 Field Unit

6 Device

7 Event

8 Method

9 Mutex

10 Operation Region

11 Power Resource

ACPI Source Language (ASL) Reference 627

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Value Object

12 Processor

13 Thermal Zone

14 Buffer Field

15 DDB Handle

16 Debug Object

>16 Reserved

18.5.87 One (Constant One Object)

Syntax

One

Description

The constant One object is an object of type Integer that will always read the LSB as set and all other bits
as clear (that is, the value of 1). Writes to this object are not allowed.

18.5.88 Ones (Constant Ones Object)

Syntax

Ones

Description

The constant Ones object is an object of type Integer that will always read as all bits set. Writes to this
object are not allowed.

18.5.89 OperationRegion (Declare Operation Region)

Syntax

OperationRegion (RegionName, RegionSpace, Offset, Length)

Arguments

Declares an operation region named RegionName. Offset is the offset within the selected RegionSpace at
which the region starts (byte-granular), and Length is the length of the region in bytes.

Description

An Operation Region is a type of data object where read or write operations to the data object are
performed in some hardware space. For example, the Definition Block can define an Operation Region
within a bus, or system I/O space. Any reads or writes to the named object will result in accesses to the I/O
space.

Operation regions are regions in some space that contain hardware registers for exclusive use by ACPI
control methods. In general, no hardware register (at least byte-granular) within the operation region
accessed by an ACPI control method can be shared with any accesses from any other source, with the
exception of using the Global Lock to share a region with the firmware. The entire Operation Region can
be allocated for exclusive use to the ACPI subsystem in the host OS.

628 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Operation Regions that are defined within the scope of a method are the exception to this rule. These
Operation Regions are known as “Dynamic” since the OS has no idea that they exist or what registers they
use until the control method is executed. Using a Dynamic SystemIO or SystemMemory Operation Region
is not recommended since the OS cannot guarantee exclusive access. All other types of Operation Regions
may be Dynamic.

Operation Regions define the overall base address and length of a hardware region, but they cannot be
accessed directly by AML code. A Field object containing one or more FieldUnits is used to overlay the
Operation Region in order to access individual areas of the Region. An individual FieldUnit within an
Operation Region may be as small as one bit, or as large as the length of the entire Region. FieldUnit
values are normalized (shifted and masked to the proper length.) The data type of a FieldUnit can be either
a Buffer or an Integer, depending on the bit length of the FieldUnit. If the FieldUnit is smaller than or
equal to the size of an Integer (in bits), it will be treated as an Integer. If the FieldUnit is larger than the size
of an Integer, it will be treated as a Buffer. The size of an Integer is indicated by the DSDT header’s
Revision field. A revision less than 2 indicates that the size of an Integer is 32 bits. A value greater than or
equal to 2 signifies that the size of an Integer is 64 bits. For more information about data types and
FieldUnit type conversion rules, see section 18.2.5.7, “Data Type Conversion Rules”.

An Operation Region object implicitly supports Mutex synchronization. Updates to the object, or a Field
data object for the region, will automatically synchronize on the Operation Region object; however, a
control method may also explicitly synchronize to a region to prevent other accesses to the region (from
other control methods). Notice that according to the control method execution model, control method
execution is non-preemptive. Because of this, explicit synchronization to an Operation Region needs to be
done only in cases where a control method blocks or yields execution and where the type of register usage
requires such synchronization.

There are eight predefined Operation Region types specified in ACPI:

Name (RegionSpace Keyword) Value

SystemMemory 0

SystemIO 1

PCI_Config 2

EmbeddedControl 3

SMBus 4

CMOS 5

PCIBARTarget 6

IPMI 7

Reserved 0x08-0x7F

In addition, OEMs may define Operation Regions types 0x80 to 0xFF.

Example

The following example ASL code shows the use of OperationRegion combined with Field to describe
IDE 0 and 1 controlled through general I/O space, using one FET.

OperationRegion (GIO, SystemIO, 0x125, 0x1)
Field (GIO, ByteAcc, NoLock, Preserve) {

IDEI, 1, // IDEISO_EN - isolation buffer
IDEP, 1, // IDE_PWR_EN - power
IDER, 1 // IDERST#_EN - reset#

}

ACPI Source Language (ASL) Reference 629

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.90 Or (Integer Bitwise Or)

Syntax

Or (Source1, Source2, Result) => Integer

Arguments

Source1 and Source2 are evaluated as Integers.

Description

A bitwise OR is performed and the result is optionally stored in Result.

18.5.91 Package (Declare Package Object)

Syntax

Package (NumElements) {PackageList} => Package

Arguments

NumElements is evaluated as an integer data type. PackageList is an initializer list of objects.

Description

Declares an unnamed aggregation of data items, constants, and/or references to control methods. The size
of the package is NumElements. PackageList contains the list data items, constants, and/or control method
references used to initialize the package.

If NumElements is absent, it is set to match the number of elements in the PackageList. If NumElements is
present and greater than the number of elements in the PackageList, the default entry of type Uninitialized
(see ObjectType) is used to initialize the package elements beyond those initialized from the PackageList.

Evaluating an undefined element will yield an error, but elements can be assigned values to make them
defined. It is an error for NumElements to be less than the number of elements in the PackageList. It is an
error for NumElements to exceed 255.

There are two types of package elements in the PackageList: data objects and references to control
methods.

Examples

Example 1:

Package () {
3,
9,
“ACPI 1.0 COMPLIANT”,
Package () {

“CheckSum=>”,
Package () {7, 9}

},
0

}

Example 2: This example defines and initializes a two-dimensional array.

Package () {
Package () {11, 12, 13},
Package () {21, 22, 23}

}

630 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Example 3: This encoding allocates space for ten things to be defined later (see the Name and Index term
definitions).

Package (10) {}

Note: The ability to create variable-sized packages was first introduced in ACPI 2.0. ACPI 1.0 only
allowed fixed-size packages with up to 255 elements.

18.5.92 PowerResource (Declare Power Resource)

Syntax

PowerResource (ResourceName, SystemLevel, ResourceOrder) {ObjectList}

Arguments

Declares a power resource named ResourceName. PowerResource opens a name scope.

Description

For a definition of the PowerResource term, see section 7.1, “Declaring a Power Resource Object.”

18.5.93 Processor (Declare Processor)

Syntax

Processor (ProcessorName, ProcessorID, PBlockAddress, PblockLength)
{ObjectList}

Arguments

Declares a named processor object named ProcessorName. Processor opens a name scope. Each processor
is required to have a unique ProcessorID value that is unique from any other ProcessorID value.

For each processor in the system, the ACPI BIOS declares one processor object in the namespace anywhere
within the _SB scope. For compatibility with operating systems implementing ACPI 1.0, the processor
object may also be declared under the _PR scope. An ACPI-compatible namespace may define Processor
objects in either the _SB or _PR scope but not both.

PBlockAddress provides the system I/O address for the processors register block. Each processor can
supply a different such address. PBlockLength is the length of the processor register block, in bytes and is
either 0 (for no P_BLK) or 6. With one exception, all processors are required to have the same
PBlockLength. The exception is that the boot processor can have a non-zero PBlockLength when all other
processors have a zero PBlockLength. It is valid for every processor to have a PBlockLength of 0.

Description

The following block of ASL sample code shows a use of the Processor term.

Processor (
_PR.CPU0, // Namespace name
1,
0x120, // PBlk system IO address
6 // PBlkLen

) {ObjectList}

The ObjectList is an optional list that may contain an arbitrary number of ASL Objects. Processor-specific
objects that may be included in the ObjectList include _PTC, _CST, _PCT, _PSS, _PPC, _PSD, _TSD,
_CSD, _PDC, _TPC, _TSS, and _OSC. These processor-specific objects can only be specified when the
processor object is declared within the _SB scope. For a full definition of these objects, see section 8,
“Processor Configuration and Control.”

ACPI Source Language (ASL) Reference 631

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.94 QWordIO (QWord IO Resource Descriptor Macro)

Syntax

QWordIO (ResourceUsage, IsMinFixed, IsMaxFixed, Decode, ISARanges,
AddressGranularity, AddressMinimum, AddressMaximum, AddressTranslation,
RangeLength, ResourceSourceIndex, ResourceSource, DescriptorName,
TranslationType, TranslationDensity)

Arguments

ResourceUsage specifies whether the I/O range is consumed by this device (ResourceConsumer) or
passed on to child devices (ResourceProducer). If nothing is specified, then ResourceConsumer is
assumed.

IsMinFixed specifies whether the minimum address of this I/O range is fixed (MinFixed) or can be
changed (MinNotFixed). If nothing is specified, then MinNotFixed is assumed. The 1-bit field
DescriptorName. _MIF is automatically created to refer to this portion of the resource descriptor, where ‘1’
is MinFixed and ‘0’ is MinNotFixed.

IsMaxFixed specifies whether the maximum address of this I/O range is fixed (MaxFixed) or can be
changed (MaxNotFixed). If nothing is specified, then MaxNotFixed is assumed. The 1-bit field
DescriptorName. _MAF is automatically created to refer to this portion of the resource descriptor, where
‘1’ is MaxFixed and ‘0’ is MaxNotFixed.

Decode specifies whether or not the device decodes the I/O range using positive (PosDecode) or
subtractive (SubDecode) decode. If nothing is specified, then PosDecode is assumed. The 1-bit field
DescriptorName. _DEC is automatically created to refer to this portion of the resource descriptor, where
‘1’ is SubDecode and ‘0’ is PosDecode.

ISARanges specifies whether the I/O ranges specifies are limited to valid ISA I/O ranges (ISAOnly), valid
non-ISA I/O ranges (NonISAOnly) or encompass the whole range without limitation (EntireRange). The
2-bit field DescriptorName._RNG is automatically created to refer to this portion of the resource
descriptor, where ‘1’ is NonISAOnly, ‘2’ is ISAOnly and ‘0’ is EntireRange.

AddressGranularity evaluates to a 64-bit integer that specifies the power-of-two boundary (- 1) on which
the I/O range must be aligned. The 64-bit field DescriptorName. _GRA is automatically created to refer to
this portion of the resource descriptor.

AddressMinimum evaluates to a 64-bit integer that specifies the lowest possible base address of the I/O
range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is ‘1’. For
bridge devices which translate addresses, this is the address on the secondary bus. The 64-bit field
DescriptorName._MIN is automatically created to refer to this portion of the resource descriptor.

AddressMaximum evaluates to a 64-bit integer that specifies the highest possible base address of the I/O
range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is ‘1’. For
bridge devices which translate addresses, this is the address on the secondary bus. The 64-bit field
DescriptorName._MAX is automatically created to refer to this portion of the resource descriptor.

AddressTranslation evaluates to a 64-bit integer that specifies the offset to be added to a secondary bus I/O
address which results in the corresponding primary bus I/O address. For all non-bridge devices or bridges
which do not perform translation, this must be ‘0’. The 64-bit field DescriptorName._TRA is automatically
created to refer to this portion of the resource descriptor.

RangeLength evaluates to a 64-bit integer that specifies the total number of bytes decoded in the I/O range.
The 64-bit field DescriptorName. _LEN is automatically created to refer to this portion of the resource
descriptor.

ResourceSourceIndex is an optional argument which evaluates to an 8-bit integer that specifies the resource
descriptor within the object specified by ResourceSource. If this argument is specified, the ResourceSource
argument must also be specified.

632 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ResourceSource is an optional argument which evaluates to a string containing the path of a device which
produces the pool of resources from which this I/O range is allocated. If this argument is specified, but the
ResourceSourceIndex argument is not specified, a zero value is assumed.

TranslationType is an optional argument that specifies whether the resource type on the secondary side of
the bus is different (TypeTranslation) from that on the primary side of the bus or the same (TypeStatic).
If TypeTranslation is specified, then the secondary side of the bus is Memory. If TypeStatic is specified,
then the secondary side of the bus is I/O. If nothing is specified, then TypeStatic is assumed. The 1-bit field
DescriptorName. _TTP is automatically created to refer to this portion of the resource descriptor, where ‘1’
is TypeTranslation and ‘0’ is TypeStatic. See _TTP (page 248) for more information

TranslationDensity is an optional argument that specifies whether or not the translation from the primary to
secondary bus is sparse (SparseTranslation) or dense (DenseTranslation). It is only used when
TranslationType is TypeTranslation. If nothing is specified, then DenseTranslation is assumed. The 1-bit
field DescriptorName. _TRS is automatically created to refer to this portion of the resource descriptor,
where ‘1’ is SparseTranslation and ‘0’ is DenseTranslation. See _TRS (page 248) for more information.

DescriptorName is an optional argument that specifies a name for an integer constant that will be created in
the current scope that contains the offset of this resource descriptor within the current resource template
buffer. The predefined descriptor field names may be appended to this name to access individual fields
within the descriptor via the Buffer Field operators.

Description

The QWordIO macro evaluates to a buffer which contains a 64-bit I/O resource descriptor, which
describes a range of I/O addresses. The format of the 64-bit I/O resource descriptor can be found in QWord
Address Space Descriptor (page 235). The macro is designed to be used inside of a ResourceTemplate
(page 544).

18.5.95 QWordMemory (QWord Memory Resource Descriptor Macro)

Syntax

QWordMemory (ResourceUsage, Decode, IsMinFixed, IsMaxFixed, Cacheable,
ReadAndWrite, AddressGranularity, AddressMinimum, AddressMaximum,
AddressTranslation, RangeLength, ResourceSourceIndex, ResourceSource,
DescriptorName, MemoryType, TranslationType)

Arguments

ResourceUsage specifies whether the Memory range is consumed by this device (ResourceConsumer) or
passed on to child devices (ResourceProducer). If nothing is specified, then ResourceConsumer is
assumed.

Decode specifies whether or not the device decodes the Memory range using positive (PosDecode) or
subtractive (SubDecode) decode. If nothing is specified, then PosDecode is assumed. The 1-bit field
DescriptorName. _DEC is automatically created to refer to this portion of the resource descriptor, where
‘1’ is SubDecode and ‘0’ is PosDecode.

IsMinFixed specifies whether the minimum address of this Memory range is fixed (MinFixed) or can be
changed (MinNotFixed). If nothing is specified, then MinNotFixed is assumed. The 1-bit field
DescriptorName. _MIF is automatically created to refer to this portion of the resource descriptor, where ‘1’
is MinFixed and ‘0’ is MinNotFixed.

IsMaxFixed specifies whether the maximum address of this Memory range is fixed (MaxFixed) or can be
changed (MaxNotFixed). If nothing is specified, then MaxNotFixed is assumed. The 1-bit field
DescriptorName. _MAF is automatically created to refer to this portion of the resource descriptor, where
‘1’ is MaxFixed and ‘0’ is MaxNotFixed.

ACPI Source Language (ASL) Reference 633

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Cacheable specifies whether or not the memory region is cacheable (Cacheable), cacheable and write-
combining (WriteCombining), cacheable and prefetchable (Prefetchable) or uncacheable
(NonCacheable). If nothing is specified, then NonCacheable is assumed. The 2-bit field DescriptorName.
_MEM is automatically created to refer to this portion of the resource descriptor, where ‘1’ is Cacheable,
‘2’ is WriteCombining, ‘3’ is Prefetchable and ‘0’ is NonCacheable.

ReadAndWrite specifies whether or not the memory region is read-only (ReadOnly) or read/write
(ReadWrite). If nothing is specified, then ReadWrite is assumed. The 1-bit field DescriptorName._RW is
automatically created to refer to this portion of the resource descriptor, where ‘1’ is ReadWrite and ‘0’ is
ReadOnly.

AddressGranularity evaluates to a 64-bit integer that specifies the power-of-two boundary (- 1) on which
the Memory range must be aligned. The 64-bit field DescriptorName. _GRA is automatically created to
refer to this portion of the resource descriptor.

AddressMinimum evaluates to a 64-bit integer that specifies the lowest possible base address of the
Memory range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is
‘1’. For bridge devices which translate addresses, this is the address on the secondary bus. The 64-bit field
DescriptorName._MIN is automatically created to refer to this portion of the resource descriptor.

AddressMaximum evaluates to a 64-bit integer that specifies the highest possible base address of the
Memory range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is
‘1’. For bridge devices which translate addresses, this is the address on the secondary bus. The 64-bit field
DescriptorName._MAX is automatically created to refer to this portion of the resource descriptor.

AddressTranslation evaluates to a 64-bit integer that specifies the offset to be added to a secondary bus I/O
address which results in the corresponding primary bus I/O address. For all non-bridge devices or bridges
which do not perform translation, this must be ‘0’. The 64-bit field DescriptorName._TRA is automatically
created to refer to this portion of the resource descriptor.

RangeLength evaluates to a 64-bit integer that specifies the total number of bytes decoded in the Memory
range. The 64-bit field DescriptorName. _LEN is automatically created to refer to this portion of the
resource descriptor.

ResourceSourceIndex is an optional argument which evaluates to an 8-bit integer that specifies the resource
descriptor within the object specified by ResourceSource. If this argument is specified, the ResourceSource
argument must also be specified.

ResourceSource is an optional argument which evaluates to a string containing the path of a device which
produces the pool of resources from which this Memory range is allocated. If this argument is specified, but
the ResourceSourceIndex argument is not specified, a zero value is assumed.

DescriptorName is an optional argument that specifies a name for an integer constant that will be created in
the current scope that contains the offset of this resource descriptor within the current resource template
buffer. The predefined descriptor field names may be appended to this name to access individual fields
within the descriptor via the Buffer Field operators.

MemoryType is an optional argument that specifies the memory usage. The memory can be marked as
normal (AddressRangeMemory), used as ACPI NVS space (AddressRangeNVS), used as ACPI
reclaimable space (AddressRangeACPI) or as system reserved (AddressRangeReserved). If nothing is
specified, then AddressRangeMemory is assumed. The 2-bit field DescriptorName. _MTP is automatically
created in order to refer to this portion of the resource descriptor, where ‘0’ is AddressRangeMemory, ‘1’ is
AddressRangeReserved, ‘2’ is AddressRangeACPI and ‘3’ is AddressRangeNVS.

TranslationType is an optional argument that specifies whether the resource type on the secondary side of
the bus is different (TypeTranslation) from that on the primary side of the bus or the same (TypeStatic).
If TypeTranslation is specified, then the secondary side of the bus is I/O. If TypeStatic is specified, then the
secondary side of the bus is I/O. If nothing is specified, then TypeStatic is assumed. The 1-bit field
DescriptorName. _TTP is automatically created to refer to this portion of the resource descriptor, where ‘1’
is TypeTranslation and ‘0’ is TypeStatic. See _TTP (page 248) for more information.

634 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Description

The QWordMemory macro evaluates to a buffer which contains a 64-bit memory resource descriptor,
which describes a range of memory addresses. The format of the 64-bit memory resource descriptor can be
found in “QWord Address Space Descriptor ” (page 235). The macro is designed to be used inside of a
ResourceTemplate (page 544).

18.5.96 QWordSpace (QWord Space Resource Descriptor Macro)

Syntax

QWordSpace (ResourceType, ResourceUsage, Decode, IsMinFixed, IsMaxFixed,
TypeSpecificFlags, AddressGranularity, AddressMinimum, AddressMaximum,
AddressTranslation, RangeLength, ResourceSourceIndex, ResourceSource,
DescriptorName)

Arguments

ResourceType evaluates to an 8-bit integer that specifies the type of this resource. Acceptable values are
0xC0 through 0xFF.

ResourceUsage specifies whether the Memory range is consumed by this device (ResourceConsumer) or
passed on to child devices (ResourceProducer). If nothing is specified, then ResourceConsumer is
assumed.

Decode specifies whether or not the device decodes the Memory range using positive (PosDecode) or
subtractive (SubDecode) decode. If nothing is specified, then PosDecode is assumed. The 1-bit field
DescriptorName. _DEC is automatically created to refer to this portion of the resource descriptor, where
‘1’ is SubDecode and ‘0’ is PosDecode.

IsMinFixed specifies whether the minimum address of this Memory range is fixed (MinFixed) or can be
changed (MinNotFixed). If nothing is specified, then MinNotFixed is assumed. The 1-bit field
DescriptorName. _MIF is automatically created to refer to this portion of the resource descriptor, where ‘1’
is MinFixed and ‘0’ is MinNotFixed.

IsMaxFixed specifies whether the maximum address of this Memory range is fixed (MaxFixed) or can be
changed (MaxNotFixed). If nothing is specified, then MaxNotFixed is assumed. The 1-bit field
DescriptorName. _MAF is automatically created to refer to this portion of the resource descriptor, where
‘1’ is MaxFixed and ‘0’ is MaxNotFixed.

TypeSpecificFlags evaluates to an 8-bit integer. The flags are specific to the ResourceType.

AddressGranularity evaluates to a 64-bit integer that specifies the power-of-two boundary (- 1) on which
the Memory range must be aligned. The 64-bit field DescriptorName. _GRA is automatically created to
refer to this portion of the resource descriptor.

AddressMinimum evaluates to a 64-bit integer that specifies the lowest possible base address of the
Memory range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is
‘1’. For bridge devices which translate addresses, this is the address on the secondary bus. The 64-bit field
DescriptorName._MIN is automatically created to refer to this portion of the resource descriptor.

AddressMaximum evaluates to a 64-bit integer that specifies the highest possible base address of the
Memory range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is
‘1’. For bridge devices which translate addresses, this is the address on the secondary bus. The 64-bit field
DescriptorName._MAX is automatically created to refer to this portion of the resource descriptor.

AddressTranslation evaluates to a 64-bit integer that specifies the offset to be added to a secondary bus I/O
address which results in the corresponding primary bus I/O address. For all non-bridge devices or bridges
which do not perform translation, this must be ‘0’. The 64-bit field DescriptorName._TRA is automatically
created to refer to this portion of the resource descriptor.

ACPI Source Language (ASL) Reference 635

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

RangeLength evaluates to a 64-bit integer that specifies the total number of bytes decoded in the Memory
range. The 64-bit field DescriptorName. _LEN is automatically created to refer to this portion of the
resource descriptor.

ResourceSourceIndex is an optional argument which evaluates to an 8-bit integer that specifies the resource
descriptor within the object specified by ResourceSource. If this argument is specified, the ResourceSource
argument must also be specified.

ResourceSource is an optional argument which evaluates to a string containing the path of a device which
produces the pool of resources from which this Memory range is allocated. If this argument is specified, but
the ResourceSourceIndex argument is not specified, a zero value is assumed.

DescriptorName is an optional argument that specifies a name for an integer constant that will be created in
the current scope that contains the offset of this resource descriptor within the current resource template
buffer. The predefined descriptor field names may be appended to this name to access individual fields
within the descriptor via the Buffer Field operators.

Description

The QWordSpace macro evaluates to a buffer which contains a 64-bit Address Space resource descriptor,
which describes a range of addresses. The format of the 64-bit AddressSpace descriptor can be found in
“QWord Address Space Descriptor ” (page 235). The macro is designed to be used inside of a
ResourceTemplate (page 544).

18.5.97 RefOf (Create Object Reference)

Syntax

RefOf (Object) => ObjectReference

Arguments

Object can be any object type (for example, a package, a device object, and so on).

Description

Returns an object reference to Object. If the Object does not exist, the result of a RefOf operation is fatal.
Use the CondRefOf term in cases where the Object might not exist.

The primary purpose of RefOf() is to allow an object to be passed to a method as an argument to the
method without the object being evaluated at the time the method was loaded.

18.5.98 Register (Generic Register Resource Descriptor Macro)

Syntax

Register (AddressSpaceKeyword, RegisterBitWidth, RegisterBitOffset,
RegisterAddress, AccessSize, DescriptorName)

Arguments

AddressSpaceKeyword specifies the address space where the register exists. The register can exist in I/O
space (SystemIO), memory (SystemMemory), PCI configuration space (PCI_Config), embedded
controller space (EmbeddedControl), SMBus (SMBus) or fixed-feature hardware (FFixedHW). The 8-bit
field DescriptorName. _ASI is automatically created in order to refer to this portion of the resource
descriptor. See _ASI (page 251) for more information, including a list of valid values and their meanings.

RegisterBitWidth evaluates to an 8-bit integer that specifies the number of bits in the register. The 8-bit
field DescriptorName. _RBW is automatically created in order to refer to this portion of the resource
descriptor. See _RBW (page 251) for more information.

636 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

RegisterBitOffset evaluates to an 8-bit integer that specifies the offset in bits from the start of the register
indicated by RegisterAddress. The 8-bit field DescriptorName. _RBO is automatically created in order to
refer to this portion of the resource descriptor. See _RBO (page 251) for more information.

RegisterAddress evaluates to a 64-bit integer that specifies the register address. The 64-bit field
DescriptorName. _ADR is automatically created in order to refer to this portion of the resource descriptor.
See _ADR (page 251) for more information.

AccessSize evaluates to an 8-bit integer that specifies the size of data values used when accessing the
address space as follows:

0 - Undefined (legacy)
1 - Byte access
2 - Word access
3 - DWord access
4 - QWord access

The 8-bit field DescriptorName. _ASZ is automatically created in order to refer to this portion of the
resource descriptor. See _ASZ(page 251) for more information. For backwards compatibility, the AccesSize
parameter is optional when invoking the Register macro. If the AccessSize parameter is not supplied then
the AccessSize field will be set to zero. In this case, OSPM will assume the access size.

DescriptorName is an optional argument that specifies a name for an integer constant that will be created in
the current scope that contains the offset of this resource descriptor within the current resource template
buffer. The predefined descriptor field names may be appended to this name to access individual fields
within the descriptor via the Buffer Field operators.

Description

The Register macro evaluates to a buffer which contains a generic register resource descriptor. The format
of the generic register resource descriptor can be found in “Generic Register Descriptor ” (page 251). The
macro is designed to be used inside of a ResourceTemplate (page 544).

18.5.99 Release (Release a Mutex Synchronization Object)

Syntax

Release (SyncObject)

Arguments

SynchObject must be a mutex synchronization object.

Description

If the mutex object is owned by the current invocation, ownership for the Mutex is released once. It is fatal
to release ownership on a Mutex unless it is currently owned. A Mutex must be totally released before an
invocation completes.

18.5.100 Reset (Reset an Event Synchronization Object)

Syntax

Reset (SyncObject)

Arguments

SynchObject must be an Event synchronization object.

ACPI Source Language (ASL) Reference 637

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Description

This operator is used to reset an event synchronization object to a non-signaled state. See also the Wait and
Signal function operator definitions.

18.5.101 ResourceTemplate (Resource To Buffer Conversion Macro)

Syntax

ResourceTemplate () {ResourceMacroList} => Buffer

Description

For a full definition of the ResourceTemplateTerm macro, see section 18.2.3 “ASL Resource Templates”
(page 560)

18.5.102 Return (Return from Method Execution)

Syntax

Return
Return ()
Return (Arg)

Arguments

Arg is optional and can be any valid object or reference.

Description

Returns control to the invoking control method, optionally returning a copy of the object named in Arg. If
no Arg object is specified, a Return(Zero) is generated by the ASL compiler.

Note: in the absence of an explicit Return () statement, the return value to the caller is undefined.

18.5.103 Revision (Constant Revision Object)

Syntax

Revision

Description

The constant Revision object is an object of type Integer that will always read as the revision of the AML
interpreter.

18.5.104 Scope (Open Named Scope)

Syntax

Scope (Location) {ObjectList}

Arguments

Opens and assigns a base namespace scope to a collection of objects. All object names defined within the
scope are created relative to Location. Note that Location does not have to be below the surrounding scope,
but can refer to any location within the namespace. The Scope term itself does not create objects, but only
locates objects within the namespace; the actual objects are created by other ASL terms.

638 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Description

The object referred to by Location must already exist in the namespace and be one of the following object
types that has a namespace scope associated with it:

 A predefined scope such as: \ (root), _SB, \GPE, _PR, _TZ, etc.
 Device
 Processor
 Thermal Zone
 Power Resource

The Scope term alters the current namespace location to the existing Location. This causes the defined
objects within ObjectList to be created relative to this new location in the namespace.

Note: When creating secondary SSDTs, it is often required to use the Scope operator to change the
namespace location in order create objects within some part of the namespace that has been defined by the
main DSDT. Use the External operator to declare the scope location so that the ASL compiler will not
issue an error for an undefined Location.

Examples

The following example ASL code uses the Scope operator and creates several objects:

Scope (\PCI0)
{

Name (X, 3)
Scope (\)
{

Method (RQ) {Return (0)}
}
Name (^Y, 4)

}

The created objects are placed in the ACPI namespace as shown:

\PCI0.X
\RQ
\Y

This example shows the use of External in conjunction with Scope within an SSDT:

DefinitionBlock ("ssdt.aml", "SSDT", 2, "X", "Y", 0x00000001)
{

External (_SB.PCI0, DeviceObj)

Scope (_SB.PCI0)
{
}

}

18.5.105 ShiftLeft (Integer Shift Left)

Syntax

ShiftLeft (Source, ShiftCount, Result) => Integer

Arguments

Source and ShiftCount are evaluated as Integers.

Description

Source is shifted left with the least significant bit zeroed ShiftCount times. The result is optionally stored
into Result.

ACPI Source Language (ASL) Reference 639

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.106 ShiftRight (Integer Shift Right)

Syntax

ShiftRight (Source, ShiftCount, Result) => Integer

Arguments

Source and ShiftCount are evaluated as Integers.

Description

Source is shifted right with the most significant bit zeroed ShiftCount times. The result is optionally stored
into Result.

18.5.107 Signal (Signal a Synchronization Event)

Syntax

Signal (SyncObject)

Arguments

SynchObject must be an Event synchronization object.

Description

The Event object is signaled once, allowing one invocation to acquire the event.

18.5.108 SizeOf (Get Data Object Size)

Syntax

SizeOf (ObjectName) => Integer

Arguments

ObjectName must be a buffer, string or package object.

Description

Returns the size of a buffer, string, or package data object.

For a buffer, it returns the size in bytes of the data. For a string, it returns the size in bytes of the string, not
counting the trailing NULL. For a package, it returns the number of elements. For an object reference, the
size of the referenced object is returned. Other data types cause a fatal run-time error.

18.5.109 Sleep (Milliseconds Sleep)

Syntax

Sleep (MilliSeconds)

Arguments

The Sleep term is used to implement long-term timing requirements. Execution is delayed for at least the
required number of milliseconds.

640 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Description

The implementation of Sleep is to round the request up to the closest sleep time supported by the OS and
relinquish the processor.

18.5.110 Stall (Stall for a Short Time)

Syntax

Stall (MicroSeconds)

Arguments

The Stall term is used to implement short-term timing requirements. Execution is delayed for at least the
required number of microseconds.

Description

The implementation of Stall is OS-specific, but must not relinquish control of the processor. Because of
this, delays longer than 100 microseconds must use Sleep instead of Stall.

18.5.111 StartDependentFn (Start Dependent Function Resource
Descriptor Macro)

Syntax

StartDependentFn (CompatibilityPriority, PerformancePriority) {ResourceList}

Arguments

CompatibilityPriority indicates the relative compatibility of the configuration specified by ResourceList
relative to the PC/AT. 0 = Good, 1 = Acceptable, 2 = Sub-optimal.

PerformancePriority indicates the relative performance of the configuration specified by ResourceList
relative to the other configurations. 0 = Good, 1 = Acceptable, 2 = Sub-optimal.

ResourceList is a list of resources descriptors which must be selected together for this configuration.

Description

The StartDependentFn macro evaluates to a buffer which contains a start dependent function resource
descriptor, which describes a group of resources which must be selected together. Each subsequent
StartDependentFn or StartDependentFnNoPri resource descriptor introduces a new choice of resources for
configuring the device, with the last choice terminated with an EndDependentFn resource descriptor. The
format of the start dependent function resource descriptor can be found in “Start Dependent Functions
Descriptor” (page 226). This macro generates the two-byte form of the resource descriptor. The macro is
designed to be used inside of a ResourceTemplate (page 544).

ACPI Source Language (ASL) Reference 641

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.112 StartDependentFnNoPri (Start Dependent Function Resource
Descriptor Macro)

Syntax

StartDependentFnNoPri () {ResourceList}

Description

The StartDependentFnNoPri macro evaluates to a buffer which contains a start dependent function
resource descriptor, which describes a group of resources which must be selected together. Each
subsequent StartDependentFn or StartDependentFnNoPri resource descriptor introduces a new choice of
resources for configuring the device, with the last choice terminated with an EndDependentFn resource
descriptor. The format of the start dependent function resource descriptor can be found in “Start Dependent
Functions Descriptor” (page 226). This macro generates the one-byte form of the resource descriptor. The
macro is designed to be used inside of a ResourceTemplate (page 544).

This is similar to StartDependentFn (page 547) with both CompatibilityPriority and PerformancePriority
set to 1, but is one byte shorter.

18.5.113 Store (Store an Object)

Syntax

Store (Source, Destination) => DataRefObject

Arguments

This operation evaluates Source, converts it to the data type of Destination, and writes the result into
Destination. For information on automatic data-type conversion, see section 16.2.2, “ASL Data Types.”

Description

Stores to OperationRegion Field data types may relinquish the processor depending on the region type.

All stores (of any type) to the constant Zero, constant One, or constant Ones object are not allowed. Stores
to read-only objects are fatal. The execution result of the operation depends on the type of Destination. For
any type other than an operation region field, the execution result is the same as the data written to
Destination. For operation region fields with an AccessType of ByteAcc, WordAcc, DWordAcc,
QWordAcc or AnyAcc, the execution result is the same as the data written to Destination as in the normal
case, but when the AccessType is BufferAcc, the operation region handler may modify the data when it is
written to the Destination so that the execution result contains modified data.

Example

The following example creates the name CNT that references an integer data object with the value 5 and
then stores CNT to Local0. After the Store operation, Local0 is an integer object with the value 5.

Name (CNT, 5)
Store (CNT, Local0)

18.5.114 Subtract (Integer Subtract)

Syntax

Subtract (Minuend, Subtrahend, Result) => Integer

Arguments

Minuend and Subtrahend are evaluated as Integers.

642 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Description

Subtrahend is subtracted from Minuend, and the result is optionally stored into Result. Underflow
conditions are ignored and the result simply loses the most significant bits.

18.5.115 Switch (Select Code To Execute Based On Expression)

Syntax

Switch (Expression) {CaseTermList}

Arguments

Expression is an ASL expression that evaluates to an Integer, String or Buffer.

Description

The Switch, Case and Default statements help simplify the creation of conditional and branching code.
The Switch statement transfers control to a statement within the enclosed body of executable ASL code

If the Case Value is an Integer, Buffer or String, then control passes to the statement that matches the value
of Switch (Expression). If the Case value is a Package, then control passes if any member of the package
matches the Switch (Value) The Switch CaseTermList can include any number of Case instances, but no
two Case Values (or members of a Value, if Value is a Package) within the same Switch statement can
have the same value.

Execution of the statement body begins at the selected TermList and proceeds until the TermList end of
body or until a Break or Continue statement transfers control out of the body.

The Default statement is executed if no Case Value matches the value of Switch (expression). If the
Default statement is omitted, and no Case match is found, none of the statements in the Switch body are
executed. There can be at most one Default statement. The Default statement can appear anywhere in the
body of the Switch statement.

A Case or Default term can only appear inside a Switch statement. Switch statements can be nested.

Compatibility Note: The Switch, Case, and Default terms were first introduced in ACPI 2.0. However,
their implementation is backward compatible with ACPI 1.0 AML interpreters.

Example

Use of the Switch statement usually looks something like this:

Switch (expression)
{

Case (value) {
Statements executed if Lequal (expression, value)

}
Case (Package () {value, value, value}) {

Statements executed if Lequal (expression, any value in package)
}
Default {

Statements executed if expression does not equal
any case constant-expression

}
}

Compiler Note: The following example demonstrates how the Switch statement should be translated into
ACPI 1.0-compatible AML:

ACPI Source Language (ASL) Reference 643

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Switch (Add (ABCD(),1)
{

Case (1) {
…statements1…

}
Case (Package () {4,5,6}) {

…statements2…
}
Default {

…statements3…
}

}

is translated as:

Name (_T_I, 0) // Create Integer temporary variable for result
While (One)
{

Store (Add (ABCD (), 1), _T_I)
If (LEqual (_T_I, 1)) {

…statements1…
}
Else {
If (LNotEqual (Match (Package () {4, 5, 6}, MEQ, _T_I, MTR, 0, 0), Ones)) {

…statements2…
}
Else {

…statements3…
}
Break

}

The While (One) is emitted to enable the use of Break and Continue within the Switch statement.
Temporary names emitted by the ASL compiler should appear at the top level of the method, since the
Switch statement could appear within a loop and thus attempt to create the name more than once.

Note: If the ASL compiler is unable to determine the type of the expression, then it will generate a warning
and assume a type of Integer. The warning will indicate that the code should use one of the type conversion
operators (Such as ToInteger, ToBuffer, ToDecimalString or ToHexString). Caution: Some of these
operators are defined starting with ACPI 2.0 and as such may not be supported by ACPI 1.0b compatible
interpreters.

For example:

Switch (ABCD ()) // Cannot determine the type because methods can return anything.
{

…case statements…
}

will generate a warning and the following code:

Name (_T_I, 0)
Store (ABCD (), _T_I)

To remove the warning, the code should be:

Switch (ToInteger (ABCD ()))
{

…case statements…
}

644 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.116 ThermalZone (Declare Thermal Zone)

Syntax

ThermalZone (ThermalZoneName) {ObjectList}

Arguments

Declares a Thermal Zone object named ThermalZoneName. ThermalZone opens a name scope.

Each use of a ThermalZone term declares one thermal zone in the system. Each thermal zone in a system
is required to have a unique ThermalZoneName.

Description

A thermal zone may be declared in the namespace anywhere within the _SB scope. For compatibility with
operating systems implementing ACPI 1.0, a thermal zone may also be declared under the _TZ scope. An
ACPI-compatible namespace may define Thermal Zone objects in either the _SB or _TZ scope but not
both.

For example ASL code that uses a ThermalZone statement, see section 12, “Thermal Management.”

18.5.117 Timer (Get 64-Bit Timer Value)

Syntax

Timer => Integer

Description

The timer opcode returns a monotonically increasing value that can be used by ACPI methods to measure
time passing, this enables speed optimization by allowing AML code to mark the passage of time
independent of OS ACPI interpreter implementation.

The Sleep opcode can only indicate waiting for longer than the time specified.

The value resulting from this opcode is 64-bits. It is monotonically increasing, but it is not guaranteed that
every result will be unique, i.e. two subsequent instructions may return the same value. The only guarantee
is that each subsequent evaluation will be greater-than or equal to the previous ones.

The period of this timer is 100 nanoseconds. While the underlying hardware may not support this
granularity, the interpreter will do the conversion from the actual timer hardware frequency into 100
nanosecond units.

Users of this opcode should realize that a value returned only represents the time at which the opcode itself
executed. There is no guarantee that the next opcode in the instruction stream will execute in any particular
time bound.

The OSPM can implement this using the ACPI Timer and keep track of overrun. Other implementations are
possible. This provides abstraction away from chipset differences

Compatibility Note: New for ACPI 3.0

ACPI Source Language (ASL) Reference 645

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.118 ToBCD (Convert Integer to BCD)

Syntax

ToBCD (Value, Result) => Integer

Arguments

Value is evaluated as an integer

Description

The ToBCD operator is used to convert Value from a numeric (Integer) format to a BCD format and
optionally store the numeric value into Result.

18.5.119 ToBuffer (Convert Data to Buffer)

Syntax

ToBuffer (Data, Result) => Buffer

Arguments

Data must be an Integer, String, or Buffer data type.

Description

Data is converted to buffer type and the result is optionally stored into Result. If Data is an integer, it is
converted into n bytes of buffer (where n is 4 if the definition block has defined integers as 32-bits or 8 if
the definition block has defined integers as 64-bits as indicated by the Definition Block table header’s
Revision field), taking the least significant byte of integer as the first byte of buffer. If Data is a buffer, no
conversion is performed. If Data is a string, each ASCII string character is copied to one buffer byte,
including the string null terminator. A null (zero-length) string will be converted to a zero-length buffer.

18.5.120 ToDecimalString (Convert Data to Decimal String)

Syntax

ToDecimalString (Data, Result) => String

Arguments

Data must be an Integer, String, or Buffer data type.

Description

Data is converted to a decimal string, and the result is optionally stored into Result. If Data is already a
string, no action is performed. If Data is a buffer, it is converted to a string of decimal values separated by
commas. (Each byte of the buffer is converted to a single decimal value.) A zero-length buffer will be
converted to a null (zero-length) string.

646 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.121 ToHexString (Convert Data to Hexadecimal String)

Syntax

ToHexString (Data, Result) => String

Arguments

Data must be an Integer, String, or Buffer data type.

Description

Data is converted to a hexadecimal string, and the result is optionally stored into Result. If Data is already
a string, no action is performed. If Data is a buffer, it is converted to a string of hexadecimal values
separated by commas. A zero-length buffer will be converted to a null (zero-length) string.

18.5.122 ToInteger (Convert Data to Integer)

Syntax

ToInteger (Data, Result) => Integer

Arguments

Data must be an Integer, String, or Buffer data type.

Description

Data is converted to integer type and the result is optionally stored into Result. If Data is a string, it must
be either a decimal or hexadecimal numeric string (in other words, prefixed by “0x”) and the value must
not exceed the maximum of an integer value. If the value is exceeding the maximum, the result of the
conversion is unpredictable. A null (zero-length) string is illegal. If Data is a Buffer, the first 8 bytes of the
buffer are converted to an integer, taking the first byte as the least significant byte of the integer. A zero-
length buffer is illegal. If Data is an integer, no action is performed.

18.5.123 ToString (Convert Buffer To String)

Syntax

ToString (Source, Length, Result) => String

Arguments

Source is evaluated as a buffer. Length is evaluated as an integer data type.

Description

Starting with the first byte, the contents of the buffer are copied into the string until the number of
characters specified by Length is reached or a null (0) character is found. If Length is not specified or is
Ones, then the contents of the buffer are copied until a null (0) character is found. If the source buffer has a
length of zero, a zero length (null terminator only) string will be created. The result is copied into the
Result.

ACPI Source Language (ASL) Reference 647

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.124 ToUUID (Convert String to UUID Macro)

Syntax

ToUUID (AsciiString) => Buffer

Arguments

AsciiString is evaluated as a String data type.

Description

This macro will convert an ASCII string to a 128-bit buffer. The string must have the following format:

aabbccdd-eeff-gghh-iijj-kkllmmnnoopp

where aa – pp are one byte hexadecimal numbers, made up of hexadecimal digits. The resulting buffer has
the following format:

Table 18-21 UUID Buffer Format

String Offset In Buffer

aa 3

bb 2

cc 1

dd 0

ee 5

ff 4

gg 7

hh 6

ii 8

jj 9

kk 10

ll 11

mm 12

nn 13

oo 14

pp 15

Compatibility Note: New for ACPI 3.0

648 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.125 Unicode (String To Unicode Conversion Macro)

Syntax

Unicode (String) => Buffer

Arguments

This macro will convert a string to a Unicode (UTF-16) string contained in a buffer. The format of the
Unicode string is 16 bits per character, with a 16-bit null terminator.

18.5.126 Unload (Unload Definition Block)

Syntax

Unload (Handle)

Arguments

Handle is evaluated as a DDBHandle data type.

Description

Performs a run-time unload of a Definition Block that was loaded using a Load term or LoadTable term.
Loading or unloading a Definition Block is a synchronous operation, and no control method execution
occurs during the function. On completion of the Unload operation, the Definition Block has been
unloaded (all the namespace objects created as a result of the corresponding Load operation will be
removed from the namespace).

18.5.127 VendorLong (Long Vendor Resource Descriptor)

Syntax

VendorLong (DescriptorName) {VendorByteList}

Arguments

DescriptorName is an optional argument that specifies a name for an integer constant that will be created in
the current scope that contains the offset of this resource descriptor within the current resource template
buffer.

VendorByteList evaluates to a comma-separated list of 8-bit integer constants, where each byte is added
verbatim to the body of the VendorLong resource descriptor. A maximum of n bytes can be specified.
UUID and UUID specific descriptor subtype are part of the VendorByteList.

Description

The VendorLong macro evaluates to a buffer which contains a vendor-defined resource descriptor. The
format of the long form of the vendor-defined resource descriptor can be found in Vendor-Defined
Descriptor (page 232). The macro is designed to be used inside of a ResourceTemplate (page 544).

This is similar to VendorShort (page 555), except that the number of allowed bytes in VendorByteList is
65,533 (instead of 7).

ACPI Source Language (ASL) Reference 649

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.128 VendorShort (Short Vendor Resource Descriptor)

Syntax

VendorShort (DescriptorName) {VendorByteList}

Arguments

DescriptorName is an optional argument that specifies a name for an integer constant that will be created in
the current scope that contains the offset of this resource descriptor within the current resource template
buffer.

Description

The VendorShort macro evaluates to a buffer which contains a vendor-defined resource descriptor. The
format of the short form of the vendor-defined resource descriptor can be found in “Vendor-Defined
Descriptor” (page 229). The macro is designed to be used inside of a ResourceTemplate (page 544).

This is similar to VendorLong (page 555), except that the number of allowed bytes in VendorByteList is 7
(instead of 65,533).

18.5.129 Wait (Wait for a Synchronization Event)

Syntax

Wait (SyncObject, TimeoutValue) => Boolean

Arguments

SynchObject must be an event synchronization object. TimeoutValue is evaluated as an Integer. The calling
method blocks while waiting for the event to be signaled.

Description

The pending signal count is decremented. If there is no pending signal count, the processor is relinquished
until a signal count is posted to the Event or until at least TimeoutValue milliseconds have elapsed.

This operation returns a non-zero value if a timeout occurred and a signal was not acquired. A
TimeoutValue of 0xFFFF (or greater) indicates that there is no time out and the operation will wait
indefinitely.

18.5.130 While (Conditional Loop)

Syntax

While (Predicate) {TermList}

Arguments

Predicate is evaluated as an integer.

Description

If the Predicate is non-zero, the list of terms in TermList is executed. The operation repeats until the
Predicate evaluates to zero.

Note: Creation of a named object more than once in a given scope is not allowed. As such, unconditionally
creating named objects within a While loop must be avoided. A fatal error will be generated on the second
iteration of the loop, during the attempt to create the same named object a second time.

650 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.131 WordBusNumber (Word Bus Number Resource Descriptor
Macro)

Syntax

WordBusNumber (ResourceUsage, IsMinFixed, IsMaxFixed, Decode,
AddressGranularity, AddressMinimum, AddressMaximum, AddressTranslation,
RangeLength, ResourceSourceIndex, ResourceSource, DescriptorName)

Arguments

ResourceUsage specifies whether the bus range is consumed by this device (ResourceConsumer) or
passed on to child devices (ResourceProducer). If nothing is specified, then ResourceConsumer is
assumed.

IsMinFixed specifies whether the minimum address of this bus number range is fixed (MinFixed) or can be
changed (MinNotFixed). If nothing is specified, then MinNotFixed is assumed. The 1-bit field
DescriptorName. _MIF is automatically created to refer to this portion of the resource descriptor, where ‘1’
is MinFixed and ‘0’ is MinNotFixed.

IsMaxFixed specifies whether the maximum address of this bus number range is fixed (MaxFixed) or can
be changed (MaxNotFixed). If nothing is specified, then MaxNotFixed is assumed. The 1-bit field
DescriptorName. _MAF is automatically created to refer to this portion of the resource descriptor, where
‘1’ is MaxFixed and ‘0’ is MaxNotFixed.

Decode specifies whether or not the device decodes the bus number range using positive (PosDecode) or
subtractive (SubDecode) decode. If nothing is specified, then PosDecode is assumed. The 1-bit field
DescriptorName. _DEC is automatically created to refer to this portion of the resource descriptor, where
‘1’ is SubDecode and ‘0’ is PosDecode.

AddressGranularity evaluates to a 16-bit integer that specifies the power-of-two boundary (- 1) on which
the bus number range must be aligned. The 16-bit field DescriptorName. _GRA is automatically created to
refer to this portion of the resource descriptor.

AddressMinimum evaluates to a 16-bit integer that specifies the lowest possible bus number for the bus
number range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is ‘1’.
For bridge devices which translate addresses, this is the address on the secondary bus. The 16-bit field
DescriptorName._MIN is automatically created to refer to this portion of the resource descriptor.

AddressMaximum evaluates to a 16-bit integer that specifies the highest possible bus number for the bus
number range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is ‘1’.
For bridge devices which translate addresses, this is the address on the secondary bus. The 16-bit field
DescriptorName._MAX is automatically created to refer to this portion of the resource descriptor.

AddressTranslation evaluates to a 16-bit integer that specifies the offset to be added to a secondary bus bus
number which results in the corresponding primary bus bus number. For all non-bridge devices or bridges
which do not perform translation, this must be ‘0’. The 16-bit field DescriptorName._TRA is automatically
created to refer to this portion of the resource descriptor.

RangeLength evaluates to a 16-bit integer that specifies the total number of bus numbers decoded in the bus
number range. The 16-bit field DescriptorName. _LEN is automatically created to refer to this portion of
the resource descriptor.

ResourceSourceIndex is an optional argument which evaluates to an 8-bit integer that specifies the resource
descriptor within the object specified by ResourceSource. If this argument is specified, the ResourceSource
argument must also be specified.

ResourceSource is an optional argument which evaluates to a string containing the path of a device which
produces the pool of resources from which this I/O range is allocated. If this argument is specified, but the
ResourceSourceIndex argument is not specified, a zero value is assumed.

ACPI Source Language (ASL) Reference 651

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

DescriptorName is an optional argument that specifies a name for an integer constant that will be created in
the current scope that contains the offset of this resource descriptor within the current resource template
buffer. The predefined descriptor field names may be appended to this name to access individual fields
within the descriptor via the Buffer Field operators.

Description

The WordBusNumber macro evaluates to a buffer which contains a 16-bit bus-number resource
descriptor. The format of the 16-bit bus number resource descriptor can be found in “Word Address Space
Descriptor ” (page 240). The macro is designed to be used inside of a ResourceTemplate (page 544).

18.5.132 WordIO (Word IO Resource Descriptor Macro)

Syntax

WordIO (ResourceUsage, IsMinFixed, IsMaxFixed, Decode, ISARanges,
AddressGranularity, AddressMinimum, AddressMaximum, AddressTranslation,
RangeLength, ResourceSourceIndex, ResourceSource, DescriptorName,
TranslationType, TranslationDensity)

Arguments

ResourceUsage specifies whether the I/O range is consumed by this device (ResourceConsumer) or
passed on to child devices (ResourceProducer). If nothing is specified, then ResourceConsumer is
assumed.

IsMinFixed specifies whether the minimum address of this I/O range is fixed (MinFixed) or can be
changed (MinNotFixed). If nothing is specified, then MinNotFixed is assumed. The 1-bit field
DescriptorName. _MIF is automatically created to refer to this portion of the resource descriptor, where ‘1’
is MinFixed and ‘0’ is MinNotFixed.

IsMaxFixed specifies whether the maximum address of this I/O range is fixed (MaxFixed) or can be
changed (MaxNotFixed). If nothing is specified, then MaxNotFixed is assumed. The 1-bit field
DescriptorName. _MAF is automatically created to refer to this portion of the resource descriptor, where
‘1’ is MaxFixed and ‘0’ is MaxNotFixed.

Decode specifies whether or not the device decodes the I/O range using positive (PosDecode) or
subtractive (SubDecode) decode. If nothing is specified, then PosDecode is assumed. The 1-bit field
DescriptorName. _DEC is automatically created to refer to this portion of the resource descriptor, where
‘1’ is SubDecode and ‘0’ is PosDecode.

ISARanges specifies whether the I/O ranges specifies are limited to valid ISA I/O ranges (ISAOnly), valid
non-ISA I/O ranges (NonISAOnly) or encompass the whole range without limitation (EntireRange). The
2-bit field DescriptorName._RNG is automatically created to refer to this portion of the resource
descriptor, where ‘1’ is NonISAOnly, ‘2’ is ISAOnly and ‘0’ is EntireRange.

AddressGranularity evaluates to a 16-bit integer that specifies the power-of-two boundary (- 1) on which
the I/O range must be aligned. The 16-bit field DescriptorName. _GRA is automatically created to refer to
this portion of the resource descriptor.

AddressMinimum evaluates to a 16-bit integer that specifies the lowest possible base address of the I/O
range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is ‘1’. For
bridge devices which translate addresses, this is the address on the secondary bus. The 16-bit field
DescriptorName._MIN is automatically created to refer to this portion of the resource descriptor.

AddressMaximum evaluates to a 16-bit integer that specifies the highest possible base address of the I/O
range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is ‘1’. For
bridge devices which translate addresses, this is the address on the secondary bus. The 16-bit field
DescriptorName._MAX is automatically created to refer to this portion of the resource descriptor.

652 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

AddressTranslation evaluates to a 16-bit integer that specifies the offset to be added to a secondary bus I/O
address which results in the corresponding primary bus I/O address. For all non-bridge devices or bridges
which do not perform translation, this must be ‘0’. The 16-bit field DescriptorName._TRA is automatically
created to refer to this portion of the resource descriptor.

RangeLength evaluates to a 16-bit integer that specifies the total number of bytes decoded in the I/O range.
The 16-bit field DescriptorName. _LEN is automatically created to refer to this portion of the resource
descriptor.

ResourceSourceIndex is an optional argument which evaluates to an 8-bit integer that specifies the resource
descriptor within the object specified by ResourceSource. If this argument is specified, the ResourceSource
argument must also be specified.

ResourceSource is an optional argument which evaluates to a string containing the path of a device which
produces the pool of resources from which this I/O range is allocated. If this argument is specified, but the
ResourceSourceIndex argument is not specified, a zero value is assumed.

DescriptorName is an optional argument that specifies a name for an integer constant that will be created in
the current scope that contains the offset of this resource descriptor within the current resource template
buffer. The predefined descriptor field names may be appended to this name to access individual fields
within the descriptor via the Buffer Field operators.

TranslationType is an optional argument that specifies whether the resource type on the secondary side of
the bus is different (TypeTranslation) from that on the primary side of the bus or the same (TypeStatic).
If TypeTranslation is specified, then the secondary side of the bus is Memory. If TypeStatic is specified,
then the secondary side of the bus is I/O. If nothing is specified, then TypeStatic is assumed. The 1-bit field
DescriptorName. _TTP is automatically created to refer to this portion of the resource descriptor, where ‘1’
is TypeTranslation and ‘0’ is TypeStatic. See _TTP (page 248) for more information

TranslationDensity is an optional argument that specifies whether or not the translation from the primary to
secondary bus is sparse (SparseTranslation) or dense (DenseTranslation). It is only used when
TranslationType is TypeTranslation. If nothing is specified, then DenseTranslation is assumed. The 1-bit
field DescriptorName. _TRS is automatically created to refer to this portion of the resource descriptor,
where ‘1’ is SparseTranslation and ‘0’ is DenseTranslation. See _TRS (page 248) for more information.

Description

The WordIO macro evaluates to a buffer which contains a 16-bit I/O range resource descriptor. The format
of the 16-bit I/O range resource descriptor can be found in “Word Address Space Descriptor ” (page 240).
The macro is designed to be used inside of a ResourceTemplate (page 544).

18.5.133 WordSpace (Word Space Resource Descriptor Macro))

Syntax

WordSpace (ResourceType, ResourceUsage, Decode, IsMinFixed, IsMaxFixed,
TypeSpecificFlags, AddressGranularity, AddressMinimum, AddressMaximum,
AddressTranslation, RangeLength, ResourceSourceIndex, ResourceSource,
DescriptorName)

Arguments

ResourceType evaluates to an 8-bit integer that specifies the type of this resource. Acceptable values are
0xC0 through 0xFF.

ResourceUsage specifies whether the bus range is consumed by this device (ResourceConsumer) or
passed on to child devices (ResourceProducer). If nothing is specified, then ResourceConsumer is
assumed.

ACPI Source Language (ASL) Reference 653

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Decode specifies whether or not the device decodes the bus number range using positive (PosDecode) or
subtractive (SubDecode) decode. If nothing is specified, then PosDecode is assumed. The 1-bit field
DescriptorName. _DEC is automatically created to refer to this portion of the resource descriptor, where
‘1’ is SubDecode and ‘0’ is PosDecode.

IsMinFixed specifies whether the minimum address of this bus number range is fixed (MinFixed) or can be
changed (MinNotFixed). If nothing is specified, then MinNotFixed is assumed. The 1-bit field
DescriptorName. _MIF is automatically created to refer to this portion of the resource descriptor, where ‘1’
is MinFixed and ‘0’ is MinNotFixed.

IsMaxFixed specifies whether the maximum address of this bus number range is fixed (MaxFixed) or can
be changed (MaxNotFixed). If nothing is specified, then MaxNotFixed is assumed. The 1-bit field
DescriptorName. _MAF is automatically created to refer to this portion of the resource descriptor, where
‘1’ is MaxFixed and ‘0’ is MaxNotFixed.

TypeSpecificFlags evaluates to an 8-bit integer. The flags are specific to the ResourceType.

AddressGranularity evaluates to a 16-bit integer that specifies the power-of-two boundary (- 1) on which
the bus number range must be aligned. The 16-bit field DescriptorName. _GRA is automatically created to
refer to this portion of the resource descriptor.

AddressMinimum evaluates to a 16-bit integer that specifies the lowest possible bus number for the bus
number range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is ‘1’.
For bridge devices which translate addresses, this is the address on the secondary bus. The 16-bit field
DescriptorName._MIN is automatically created to refer to this portion of the resource descriptor.

AddressMaximum evaluates to a 16-bit integer that specifies the highest possible bus number for the bus
number range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is ‘1’.
For bridge devices which translate addresses, this is the address on the secondary bus. The 16-bit field
DescriptorName._MAX is automatically created to refer to this portion of the resource descriptor.

AddressTranslation evaluates to a 16-bit integer that specifies the offset to be added to a secondary bus bus
number which results in the corresponding primary bus bus number. For all non-bridge devices or bridges
which do not perform translation, this must be ‘0’. The 16-bit field DescriptorName._TRA is automatically
created to refer to this portion of the resource descriptor.

RangeLength evaluates to a 16-bit integer that specifies the total number of bus numbers decoded in the bus
number range. The 16-bit field DescriptorName. _LEN is automatically created to refer to this portion of
the resource descriptor.

ResourceSourceIndex is an optional argument which evaluates to an 8-bit integer that specifies the resource
descriptor within the object specified by ResourceSource. If this argument is specified, the ResourceSource
argument must also be specified.

ResourceSource is an optional argument which evaluates to a string containing the path of a device which
produces the pool of resources from which this I/O range is allocated. If this argument is specified, but the
ResourceSourceIndex argument is not specified, a zero value is assumed.

DescriptorName is an optional argument that specifies a name for an integer constant that will be created in
the current scope that contains the offset of this resource descriptor within the current resource template
buffer. The predefined descriptor field names may be appended to this name to access individual fields
within the descriptor via the Buffer Field operators.

Description

The WordSpace macro evaluates to a buffer which contains a 16-bit Address Space resource descriptor.
The format of the 16-bit Address Space resource descriptor can be found in “Word Address Space
Descriptor ” (page 240). The macro is designed to be used inside of a ResourceTemplate (page 544).

654 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.134 XOr (Integer Bitwise Xor)

Syntax

XOr (Source1, Source2, Result) => Integer

Arguments

Source1 and Source2 are evaluated as Integers.

Description

A bitwise XOR is performed and the result is optionally stored into Result.

18.5.135 Zero (Constant Zero Object)

Syntax

Zero

Description

The constant Zero object is an object of type Integer that will always read as all bits clear. Writes to this
object are not allowed.

